
Introduction to deep learning in R

Toby Dylan Hocking
toby.hocking@nau.edu

toby.hocking@r-project.org

April 16, 2023

Introduction and overview

Example 1: avoiding overfitting in regression, overview of concepts

Example 2: classifying images of digits, coding demos

Summary and quiz questions

Machine learning intro: image classification example

ML is all about learning predictive functions f (x) ≈ y , where

I Inputs/features x can be easily computed using traditional
algorithms. For example, matrix of pixel intensities in an
image.

I Outputs/labels y are what we want to predict, typically more
difficult/costly to measure than inputs. For example, to get
an image class label, you may have to ask a human.

I Input x = image of digit, output y ∈ {0, 1, . . . , 9},
– this is a classification problem with 10 classes.

f () = 0, f () = 1

I Traditional/unsupervised algorithm: I give you a pixel
intensity matrix x ∈ R28×28, you code a function f that
returns one of the 10 possible digits. Q: how to do that?

Supervised machine learning algorithms
I give you a training data set with paired inputs/outputs, e.g.

0 1 2 3 4 5 6 7 8 9

Your job is to code an algorithm, Learn, that infers a function f
from the training data. (you don’t code f)
Source: github.com/cazala/mnist

Advantages of supervised machine learning

g() = 0
g() = 1
g() = 1

h() = 0
h() = 0
h() = 1

Learn() g

Learn() h

Train
data

Learned
function

Learning
Algorithm

Predictions
on test data

I Input x ∈ R28×28, output y ∈ {0, 1, . . . , 9} types the same!

I Can use same learning algorithm regardless of pattern.

I Pattern encoded in the labels (not the algorithm).

I Useful if there are many un-labeled data, but few labeled data
(or getting labels is long/costly).

I State-of-the-art accuracy (if there is enough training data).

Sources: github.com/cazala/mnist, github.com/zalandoresearch/fashion-mnist

Overview of tutorial

In this tutorial we will discuss two kinds of problems, which differ
by the type of the output/label/y variable we want to predict.

I Regression, y is a real number.

I Classification, y is an integer representing a category.

The rest of the tutorial will focus on three examples:

1. Regression with a single input, to demonstrate how to avoid
overfitting.

2. Classification of digit images, to demonstrate how to compare
machine learning algorithms in terms of test/prediction
accuracy.

Introduction and overview

Example 1: avoiding overfitting in regression, overview of concepts

Example 2: classifying images of digits, coding demos

Summary and quiz questions

Goal of this section: demonstrate how to avoid overfitting

I The goal of supervised machine learning is to get accurate
predictions on new/unseen/held-out test data.

I The data used during learning are caled the train set.

I Any machine learning algorithm is prone to overfit, which
means providing better predictions on the train set than on a
held-out validation/test set. (BAD)

I To learn a model which does NOT overfit (GOOD), you need
to divide your train set into subtrain/validation sets (subtrain
used as input to gradient descent algorithm, validation set
used to control number of iterations of gradient descent).

I Code for figures in this section:
https://github.com/tdhock/2023-res-baz-az/blob/

main/figure-overfitting.R

https://github.com/tdhock/2023-res-baz-az/blob/main/figure-overfitting.R
https://github.com/tdhock/2023-res-baz-az/blob/main/figure-overfitting.R

Three different data sets/patterns

I We illustrate this using a single input/feature x ∈ R.

I We use a regression problem with outputs y ∈ R.

I Goal is to learn a function f (x) ∈ R.

K-fold cross-validation for splitting data

I One way to split is via K-fold cross-validation.

I Each row is assigned a fold ID number from 1 to K.

I For each for ID, those data are held out, and other data are
kept.

I Popular relative to other splitting methods because of
simplicity and fairness (each row is held out one time).

Inputs
Features

Outputs
Labels

Tr
a
in

 s
e
t2

1
1
3
2
3
1
3
3
2
1
2

All data Split 1
2
2
2
2
3
3
3
3

1
1
1
1

Fold
IDs

Te
st

 s
e
t

Learning
Algorithm

f1
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 2
1
1
1
1
3
3
3
3

2
2
2
2Te

st
 s

e
t

Learning
Algorithm

f2
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 3
1
1
1
1
2
2
2
2

3
3
3
3Te

st
 s

e
t

Learning
Algorithm

f3
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labelsA1 A2 A3

1

N

1 D

O
b
se

rv
a
ti

o
n
s

Illustration of 4-fold cross-validation

Randomly assign each observation a fold ID from 1 to 4.

Neural network learning algorithm

I We will fit a neural network to these data.

I The neural network learns how to predict the outputs from
the inputs.

I The learning algorithm is gradient descent, which iteratively
minimizes the loss of the predictions with respect to the labels
in the subtrain set.

I We also compute the loss on the validation set, so we can
select the number of gradient descent iterations that gives the
best predictions on new data (avoiding overfitting).

Illustration of subtrain/validation split

I For validation fold 1, all observations with that fold ID are
considered the validation set.

I All other observations are considered the subtrain set.

Data=grey dots, predictions=red curve, loss=black line segments.

Data=grey dots, predictions=red curve, loss=black line segments.

Data=grey dots, predictions=red curve, loss=black line segments.

Data=grey dots, predictions=red curve, loss=black line segments.

Data=grey dots, predictions=red curve, loss=black line segments.

Different number of iterations best for different data.

Neural network prediction function

For an input feature vector x ∈ Ru1 , the prediction function for a
neural network with L layers (functions to learn) is:

f (x) = fL[· · · f1[x]]. (1)

We have for all l ∈ {1, . . . , L}:

fl(t) = Al(W
ᵀ
l t), (2)

The hyper-parameters which must be fixed prior to learning:

I Number of functions to learn L.

I Activation functions Al (classically sigmoid, typically ReLU).

I Number of hidden units per layer (u1, . . . , uL−1).

I Sparsity pattern in the weight matrices Wl ∈ Rul×ul−1 .

Network for 1 input, 1 output, 1 hidden layer

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Network for 12 inputs, 1 output, 1 hidden layer

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Network for 12 inputs, 10 outputs, 1 hidden layer

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Network for 4 inputs, 1 output, 3 hidden layers

Neural network diagrams show how each unit (node) is computed
by applying the weights (edges) to the values of the units at the
previous layer.

Non-linear activation functions Al

Each layer except the last should have a activation function Al

which is not linear (last layer activation should be identity/linear).

Gradient Descent Learning

The neural network prediction function f (x) = fL[· · · f1[x]] has
l ∈ {1, . . . , L} component functions to learn:

fl(t) = Al(W
ᵀ
l t), (3)

The weight matrices Wl ∈ Rul×ul−1 are learned using gradient
descent.

I A loss function L[f (x), y] computes how bad are predictions
with respect to labels y (ex: mean squared error for
regression, cross entropy loss for classification).

I In each iteration of gradient descent, the weights are updated
in order to get better predictions on subtrain data.

I An epoch computes gradients on all subtrain data; there can
be from 1 to N(subtrain size) iterations per epoch.

Summary of how to avoid overfitting

I Happens when subtrain error/loss decreases but validation
error increases (as a function of some hyper-parameter)

I Here the hyper-parameter is the number of iterations of
gradient descent, and overfitting starts after a certain number
of iterations.

I To maximize prediction accuracy you need to choose a
hyper-parameter with minimal validation error/loss.

I This optimal hyper-parameter will depend on the data set.

I To get optimal prediction accuracy in any machine learning
analysis, you always need to do this, because you never know
the best hyper-parameters in advance.

Introduction and overview

Example 1: avoiding overfitting in regression, overview of concepts

Example 2: classifying images of digits, coding demos

Summary and quiz questions

Image classification

I A problem in computer vision, one of the most
popular/successful application domains of machine learning.

I Input: image file x ∈ Rh×w×c where h is the height in pixels,
w is the width, c is the number of channels, e.g. RGB image
c = 3 channels.

I In this tutorial we use images with h = w = 16 pixels and
c = 1 channel (grayscale, smaller values are darker).

I Output: class/category y (from a finite set).

I In this tutorial there are ten image classes y ∈ {0, 1, . . . , 9},
one for each digit.

I Want to learn f such that f () = 0, f () = 1, etc.

I Code for figures in this section:
https://github.com/tdhock/2023-res-baz-az/blob/

main/figure-validation-loss.R

https://github.com/tdhock/2023-res-baz-az/blob/main/figure-validation-loss.R
https://github.com/tdhock/2023-res-baz-az/blob/main/figure-validation-loss.R

Representation of digits in CSV

I Each image/observation is one row.

I First column is output/label/class to predict.

I Other 256 columns are inputs/features (pixel intensity values).

Data from
https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.train.gz

1: 6 -1 -1 ... -1.000 -1.000 -1

2: 5 -1 -1 ... -0.671 -0.828 -1

3: 4 -1 -1 ... -1.000 -1.000 -1

4: 7 -1 -1 ... -1.000 -1.000 -1

5: 3 -1 -1 ... -0.883 -1.000 -1

6: 6 -1 -1 ... -1.000 -1.000 -1

...

Demo: reading CSV, plotting digits,
https://github.com/tdhock/2023-res-baz-az/blob/main/

2023-04-19-deep-learning.Rmd

https://web.stanford.edu/~hastie/ElemStatLearn/datasets/zip.train.gz
https://github.com/tdhock/2023-res-baz-az/blob/main/2023-04-19-deep-learning.Rmd
https://github.com/tdhock/2023-res-baz-az/blob/main/2023-04-19-deep-learning.Rmd

Converting R data to torch tensors

Use array function with all columns except first as data.

zip.dt <- data.table::fread("zip.train.gz")

zip.X.array <- array(

data = unlist(zip.dt[,-1]),

dim = c(nrow(zip.dt), 1, 16, 16))

zip.X.tensor <- torch::torch_tensor(zip.X.array)

zip.y.tensor <- torch::torch_tensor(

zip.dt$V1+1L, torch::torch_long())

Need to specify dimensions of input/X array:

I Observations: same as the number of rows in the CSV table.

I Channels: 1 (greyscale image, would be 3 for RGB image).

I Pixels wide: 16.

I Pixels high: 16.

For output/y need to add 1 in R, and specify long int type.

Linear model R code

n.features <- 16*16

n.classes <- 10

linear.model <- torch::nn_sequential(

torch::nn_flatten(),

torch::nn_linear(n.features, n.classes))

pred.tensor <- linear.model(zip.X.tensor)

I First layer must specify shape of inputs (here 16x16x1).

I nn flatten converts any shape to a single dimension of units
(here, convert each image from 1x16x16-array to 256-vector).

I nn linear uses all units/features in the previous layer (256)
to predict each unit in the next layer (10).

I There are ten possible classes for an output.

Loss computation

loss.fun <- torch::nn_cross_entropy_loss()

loss.tensor <- loss.fun(pred.tensor, zip.y.tensor)

step.size <- 0.1

optimizer <- torch::optim_sgd(

linear.model$parameters, lr=step.size)

optimizer$zero_grad()

loss.tensor$backward()

optimizer$step()

I loss.fun is the cross-entropy loss for multi-class
classification, which is directly optimized/minimized in each
iteration of the gradient descent learning algorithm.

I optimizer is the version of the gradient descent learning
algorithm to use.

I backward method computes gradients.

I step method updates model parameters based on gradients.

Gradient Descent learning algorithm

gradient_descent <-

function(index.list, model, n_epochs, gradient.set){

loss.dt.list <- list()

for(epoch in seq(1, n_epochs)){

take_steps(index.list[[gradient.set]], model)

epoch.loss.dt <- loss_each_set(index.list, model)

loss.dt.list[[paste(epoch)]] <-

data.table(epoch, epoch.loss.dt)

}

rbindlist(loss.dt.list)

}

I take_steps sub-routine updates model parameters.

I loss_each_set computes loss and error rate on gradient set
and held-out set.

Demo: splitting data, gradient descent loop.

Dense (fully connected) neural network R code

one.hidden.layer <- torch::nn_sequential(

torch::nn_flatten(),

torch::nn_linear(n.features, n.hidden.units),

torch::nn_relu(),

torch::nn_linear(n.hidden.units, n.classes))

two.hidden.layers <- torch::nn_sequential(

torch::nn_flatten(),

torch::nn_linear(n.features, n.hidden.1),

torch::nn_relu(),

torch::nn_linear(n.hidden.1, n.hidden.2),

torch::nn_relu(),

torch::nn_linear(n.hidden.2, n.classes))

Use for loop to implement dense network

new_fully_connected_units <- function(units.per.layer){

seq.args <- list(torch::nn_flatten())

for(output.i in seq(2, length(units.per.layer))){

input.i <- output.i-1

seq.args[[length(seq.args)+1]] <- torch::nn_linear(

units.per.layer[[input.i]],

units.per.layer[[output.i]])

if(output.i<length(units.per.layer)){

seq.args[[length(seq.args)+1]] <- torch::nn_relu()

}

}

do.call(torch::nn_sequential, seq.args)

}

I input a vector of units per layer, for example
c(256,1000,100,10).

I Begin with flatten.
I Linear followed by relu in each layer except last.

Fully connected/dense vs convolutional/sparse network

torch::nn_conv1d(in_channels=1,

out_channels=1, kernel_size=2)

Convolutional with two filters/output channels

torch::nn_conv1d(in_channels=1,

out_channels=2, kernel_size=2)

Fully connected vs convolutional, two filters

[
h1
h2

]
=

[
w1,1 w1,2 w1,3

w2,1 w2,2 w2,3

]x1x2
x3

 (fully connected)

[
h1
h2

]
=

[
v1 v2 0
0 v1 v2

]x1x2
x3

 (convolutional)


h1,1
h1,2
h2,1
h2,2

 =


v1,1 v1,2 0

0 v1,1 v1,2
v2,1 v2,2 0

0 v2,1 v2,2


x1x2
x3

 (conv, two filters)

I Weight sharing: same weights used to compute different
output units.

I Sparsity: zeros in weight matrix.

Sparse (convolutional) model R code

seq2flat <- torch::nn_sequential(

torch::nn_conv2d(in_channels = 1, out_channels = 10, kernel_size = 4),

torch::nn_relu(),

torch::nn_max_pool2d(kernel_size = 2),

torch::nn_flatten())

one.flat <- seq2flat(zip.X.tensor[1,,,,drop=FALSE])

n.flat <- length(one.flat)

torch::nn_sequential(

seq2flat,

torch::nn_linear(n.flat, n.hidden.units),

torch::nn_relu(),

torch::nn_linear(n.hidden.units, n.classes))

I Sparse: few inputs are used to predict each unit in nn conv2d.

I Exploits structure of image data to make learning
easier/faster.

K-fold cross-validation for model evaluation

Is convolutional more accurate on unseen test data?

Inputs
Features

Outputs
Labels

Tr
a
in

 s
e
t2

1
1
3
2
3
1
3
3
2
1
2

All data Split 1
2
2
2
2
3
3
3
3

1
1
1
1

Fold
IDs

Te
st

 s
e
t

Learning
Algorithm

f1
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 2
1
1
1
1
3
3
3
3

2
2
2
2Te

st
 s

e
t

Learning
Algorithm

f2
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labels

Tr
a
in

 s
e
t

Split 3
1
1
1
1
2
2
2
2

3
3
3
3Te

st
 s

e
t

Learning
Algorithm

f3
Predict labels

on test set

Compute
accuracy

with respect
to held out
test labelsA1 A2 A3

1

N

1 D

O
b
se

rv
a
ti

o
n
s

I Randomly assign a fold ID from 1 to K to each observation.

I Hold out the observations with the Split ID as test set.

I Use the other observations as the train set.

I Run learning algorithm on train set (including hyper-parmeter
selection), outputs learned function (f1-f3).

I Finally compute and plot the prediction accuracy (A1-A3)
with respect to the held-out test set.

Two kinds of cross-validation must be used

Source: https://mlr.mlr-org.com/articles/tutorial/

nested_resampling.html

https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html
https://mlr.mlr-org.com/articles/tutorial/nested_resampling.html

Accuracy rates for each test fold

I Always a good idea to compare with the trivial/featureless
baseline model which always predicts the most frequent class
in the train set. (ignoring all inputs/features)

I Here we see that the featureless baseline is much less accurate
than the three learned models, which are clearly learning
something non-trivial.

I Code for test accuracy figures:
https://github.com/tdhock/2023-res-baz-az/blob/

main/figure-test-accuracy.R

https://github.com/tdhock/2023-res-baz-az/blob/main/figure-test-accuracy.R
https://github.com/tdhock/2023-res-baz-az/blob/main/figure-test-accuracy.R

Zoom to learned models

I Dense neural network slightly more accurate than linear
model, convolutional significantly more accurate than others.

I Conclusion: convolutional neural network should be preferred
for most accurate predictions in these data.

I Maybe not the same conclusion in other data sets, with the
same models. (always need to do cross-validation experiments
to see which model is best in any given data set)

I Maybe other models/algorithms would be even more accurate
in these data. (more/less layers, more/less units, completely
different algorithm such as random forests, boosting, etc)

Introduction and overview

Example 1: avoiding overfitting in regression, overview of concepts

Example 2: classifying images of digits, coding demos

Summary and quiz questions

Summary

Thanks for participating! We have studied

I Two kinds of machine learning problems, regression y=real
number, classification y=integer category.

I Splitting a data set into train/test/subtrain/validation sets for
learning hyper-parameters and evaluating prediction accuracy.

I Overfitting and how to avoid it by choosing hyper-parameters
based on a validation set.

I Comparing prediction accuracy of learning algorithms with
each other and to a featureless baseline.

Quiz questions

I When using a design matrix to represent machine learning
inputs, what does each row and column represent?

I When splitting data into train/test sets, what is the purpose
of each set? When splitting a train set into
subtrain/validation sets, what is the purpose of each set?

I In order to determine if any non-trivial predictive relationship
between inputs and output has been learned, a comparison
with a featureless baseline that ignores the inputs must be
used. How do you compute the baseline predictions, for
regression and classification problems?

I How can you tell if machine learning model predictions are
underfitting or overfitting?

I Many learning algorithms require input of the number of
iterations or epochs. For example in R the nnet function has
the maxit argument and the keras::fit function has the
epochs argument. How should this parameter be chosen?

	Introduction and overview
	Example 1: avoiding overfitting in regression, overview of concepts [height=3cm]figure-overfitting-paper-loss
	Example 2: classifying images of digits, coding demos [height=3cm]figure-validation-loss-digits
	Summary and quiz questions

