#' 2006 Data Expo: #' Data source: #' NASA Goddard Institute for Space Studies (GISS) #' subset of the monthly climatology of the International #' Satellite Cloud Climatology Project (ISCCP), which was #' developed “to collect weather satellite radiance #' measurements and to analyze them to infer the #' global distribution of clouds, their properties, and #' their diurnal, seasonal and interannual variations.” #' #' Data contains: Monthly observations of atmospheric variables 1995-2000, #' between 113.75ºW-56.25ºW, 21.25ºS-36.25ºN with 2.5º grid #' spacing. #' #' Variables: pressure, temperature, ozone and low, medium, #' high cloud cover. #' The pressure, ozone and near-surface temperature #' observations are computed from the TIROS Optical Vertical #' Sounder (TOVS) satellite climatology observations #' #' Temperatures are given in degrees celsius (original data had Kelvin). library(animint) library(ggplot2) library(maps) library(lubridate) library(plyr) data(climate) # climate$time2 <- climate$year + floor(climate$month/3)/4 climate$time2 <- decimal_date(ymd(as.character(climate$date))) countries <- map_data("world") countries <- subset(countries, (lat < 38)&(lat>-24)) countries <- subset(countries, ((-long)>54)&((-long)<118)) temp.seq <- ggplot() + make_tallrect(data=climate, "time2") + geom_line(data=climate, aes(x=time2, y=temperature, showSelected=id)) clouds.high <- ggplot() + geom_tile(data=climate, aes(x=long, y=lat, fill=cloudhigh, clickSelects=id, showSelected=time2), colour="grey")+ scale_fill_gradient("Coverage", low="skyblue", high="white", limits=c(0, 75)) + geom_path(data=countries, aes(x=long, y=lat, group=group)) + ggtitle("High Altitute Cloud Cover")+ theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank()) clouds.mid <- ggplot() + geom_tile(data=climate, aes(x=long, y=lat, fill=cloudmid, clickSelects=id, showSelected=time2), colour="grey")+ scale_fill_gradient("Coverage", low="skyblue", high="white", limits=c(0, 75)) + geom_path(data=countries, aes(x=long, y=lat, group=group)) + ggtitle("Mid Altitute Cloud Cover")+ theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank()) clouds.low <- ggplot() + geom_tile(data=climate, aes(x=long, y=lat, fill=cloudlow, clickSelects=id, showSelected=time2), colour="grey")+ scale_fill_gradient("Coverage", low="skyblue", high="white", limits=c(0, 75)) + geom_path(data=countries, aes(x=long, y=lat, group=group)) + ggtitle("Low Altitute Cloud Cover")+ theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank()) ozone.map <- ggplot() + geom_tile(data=climate, aes(x=long, y=lat, fill=ozone, clickSelects=id, showSelected=time2), colour="grey")+ scale_fill_gradient("Concentration", low="white", high="brown") + geom_path(data=countries, aes(x=long, y=lat, group=group)) + ggtitle("Ozone Concentration")+ theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank()) # Create variable showing temp-avg.monthly.temp at that location climate <- ddply(climate, .(id, month), transform, tempdev = temperature - mean(temperature)) temperature.map <- ggplot() + geom_tile(data=climate, aes(x=long, y=lat, fill=tempdev, clickSelects=id, showSelected=time2), colour="grey")+ scale_fill_gradient2("Temperature", low="blue", mid="white", high="red", limits=c(-20, 20), midpoint=0) + geom_path(data=countries, aes(x=long, y=lat, group=group)) + ggtitle("Temperature Deviation from Monthly Norm")+ theme(axis.line=element_blank(), axis.text=element_blank(), axis.ticks=element_blank(), axis.title=element_blank()) gg2animint(list(temperature = temp.seq, cloudslow = clouds.low, cloudsmid = clouds.mid, cloudshigh = clouds.high, ozone = ozone.map, tempmap = temperature.map, time = list(variable="time2", ms=3000), width = list(450), height = list(450) ))