library(animint) data(prior) prior$accuracy$percent <- prior$accuracy$accuracy.mean * 100 prior$accuracy$percent.se <- prior$accuracy$accuracy.se * 100 sqLab <- "squared error of the prior estimate" priorBands <- list(set=ggplot()+ geom_abline()+ geom_text(aes(positive, negative, label=set), data=prior$data)+ geom_point(aes(positive, negative, size=dimension, clickSelects=set), data=prior$data)+ scale_size_continuous(range=c(3,20),breaks=prior$data$dim), error=ggplot()+ make_text(prior$accuracy, 86, 0.3, "prior")+ make_text(prior$accuracy, 86, 0.32, "samples")+ geom_point(aes(percent, sqErr.mean, fill=method, colour=classifier, showSelected=prior, showSelected2=samples, clickSelects=set), data=prior$accuracy, size=4)+ scale_colour_manual(values=c("Kernel logistic regression"="black", "Least squares probabalistic classifier"="white"))+ ylab(sqLab)+ xlab("percent classification accuracy"), samples=ggplot()+ make_tallrect(prior$accuracy, "samples")+ make_text(prior$accuracy, 175, 97.5, "prior")+ make_text(prior$accuracy, 175, 95, "set")+ geom_ribbon(aes(samples, ymin=percent-percent.se, ymax=percent+percent.se, group=interaction(method, classifier), fill=method, showSelected=prior, showSelected2=set), data=prior$accuracy, alpha=1/4)+ geom_line(aes(samples, percent, group=interaction(method, classifier), colour=method, linetype=classifier, showSelected=prior, showSelected2=set), data=prior$accuracy)+ guides(colour="none",linetype="none",fill="none")+ xlab("number of points sampled")+ ylab("percent classification accuracy"), prior=ggplot()+ make_tallrect(prior$accuracy, "prior")+ make_text(prior$accuracy, 0.5, 97.5, "samples")+ make_text(prior$accuracy, 0.5, 95, "set")+ geom_ribbon(aes(prior, ymin=percent-percent.se, ymax=percent+percent.se, group=interaction(method, classifier), fill=method, showSelected=samples, showSelected2=set), data=prior$accuracy, alpha=1/4)+ geom_line(aes(prior, percent, group=interaction(method, classifier), colour=method, linetype=classifier, showSelected=samples, showSelected2=set), data=prior$accuracy)+ xlab("class prior")+ ylab("percent classification accuracy"), samplessqErr=ggplot()+ make_tallrect(prior$accuracy, "samples")+ geom_ribbon(aes(samples, ymin=sqErr.mean-sqErr.se, ymax=sqErr.mean+sqErr.se, group=interaction(method, classifier), fill=method, showSelected=prior, showSelected2=set), data=prior$accuracy, alpha=1/4)+ geom_line(aes(samples, sqErr.mean, group=interaction(method, classifier), colour=method, linetype=classifier, showSelected=prior, showSelected2=set), data=prior$accuracy)+ guides(colour="none",linetype="none",fill="none")+ xlab("number of points sampled")+ ylab(sqLab), priorsqErr=ggplot()+ make_tallrect(prior$accuracy, "prior")+ geom_ribbon(aes(prior, ymin=sqErr.mean-sqErr.se, ymax=sqErr.mean+sqErr.se, group=interaction(method, classifier), fill=method, showSelected=samples, showSelected2=set), data=prior$accuracy, alpha=1/4)+ geom_line(aes(prior, sqErr.mean, group=interaction(method, classifier), colour=method, linetype=classifier, showSelected=samples, showSelected2=set), data=prior$accuracy)+ xlab("class prior")+ ylab(sqLab)) gg2animint(priorBands, "prior") ## are the exported files the same? ## csv.files <- Sys.glob("/tmp/RtmpVIt99h/filee8b6b741ce7/*.csv") ## for(i in 1:(length(csv.files)-1)){ ## for(j in (i+1):length(csv.files)){ ## cmd <- sprintf("diff %s %s|head -1",csv.files[i],csv.files[j]) ## out <- system(cmd, intern=TRUE) ## if(length(out)==0){ ## print(cmd) ## } ## } ## } ## Answer: 3 pairs are the same: (12,20), (14,9), (17,7). So actually ## there is not so much repetition that can be easily avoided.