data.type file.format glob files file.list
normalized.signal RData */*/signal.RData 129 RData.normalized.signal.txt
count.signal RData */*/counts.RData 129 RData.count.signal.txt
PDPA.model RData */*/PDPA.model.RData 129 RData.PDPA.model.txt
Segmentor.model RData */*/Segmentor.model.RData 129 RData.Segmentor.model.txt
dp.model RData */*/dp.model.RData 129 RData.dp.model.txt
annotated.regions RData */*/regions.RData 129 RData.annotated.regions.txt
model.error RData */*/error/*.RData 2580 RData.model.error.txt
model.peaks RData */*/peaks/*.RData 2580 RData.model.peaks.txt
count.signal bedGraph */*/counts/*.bedGraph.gz 2752 bedGraph.count.signal.txt
annotated.regions bed */*/regions/*.bed.gz 2752 bed.annotated.regions.txt
test.folds csv 4foldcv-test-folds.csv 1 csv.test.folds.txt
predicted.peaks csv 4foldcv-predicted-peaks.csv 1 csv.predicted.peaks.txt

Links to the source bed files (one line per DNA sequence read aligned to hg19). There is one bed file per sample and experiment type, and each take several gigabytes of disk space. They may be useful if you want to run a peak caller program which can not be run on coverage profiles in genome subsets.