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Problem: unbalanced supervised binary classification

» Given pairs of inputs x € RP and outputs y € {0,1} can we
learn a score f(x) € R, predict y = 1 when f(x) > 07?

Example: email, x =bag of words, y =spam or not.
Example: code, x =embedding, y =vulnerable or not.
Example: images. Jones et al. PNAS 20009.

In all of these examples, we typically have many more
negative examples than positive examples (unbalanced).

A Automated Cell Image Processing
Cytoprofile of 500+ features measured for each cell
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Most algorithms (Logistic regression,
SVM, etc) minimize a differentiable
surrogate of zero-one loss = sum of:
B .'e,a.iveMac,,inZL:a,"i,,g " False positives: f(x) > 0buty =0
Z“fp”"""”“’g”g " (predict budding, but cell is not).
T e ) False negatives: f(x) <0 buty =1
= & &—=7  (predict not budding, but cell is).
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Receiver Operating Characteristic (ROC) Curves

» Classic evaluation method from the signal processing
literature (Egan and Egan, 1975).

» For a given set of predictions, plot True Positive Rate
(=1-False Negative Rate) vs False Positive Rate, each point
on the ROC curve is a different threshold of the predicted
scores.

> Best classifier has a point near upper left (TPR=1, FPR=0),
with large Area Under the Curve (AUC).
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Research question and new idea

Can we learn a binary classification function f which directly
optimizes the ROC curve?
» Most algorithms involve minimizing a differentiable surrogate
of the zero-one loss, which is not the same.
» The Area Under the ROC Curve (AUC) is piecewise constant
(gradient zero almost everywhere), so can not be used with
gradient descent algorithms.
» We propose to encourage points to be in the upper left of
ROC space, using a loss function which is a differentiable
surrogate of the sum of min(FP,FN).
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Proposed method, details 1

» Hillman J and Hocking TD, Optimizing ROC Curves with a
Sort-Based Surrogate Loss for Binary Classification and
Changepoint Detection, arXiv:2107.01285.

» n training examples {(x;,yi) : x; € RP,y; € {—=1,+1}}7 ,,
» prediction vector § = [y1--- 7a]T € R”,

» we compute the following false positive and false negative

totals for each example i € {1,..., n},
FPi= Y Ilyj=-1], FN;= > Iy =1]. (1)
525 J5<H

FP;, FN; are the error values at the point on the ROC curve that
corresponds to observation /.



Proposed method, details 2

» Sort the observations by predicted value y; (log-linear time).
» yields a permutation {si,...,s,} of the indices {1,...,n},
» so for every g € {2,...,n} we have J5, |, > Js .

>

Error values FP;, FN; from last slide computed via modified
cumulative sum (linear time).

v

q is index of points on the ROC curve, proposed loss is Area
Under Min of FP and FN,

n

AUM(Y) = Z(ysqq - ysq) min{FPsq, Fqu}~ (2)
q=2

Algorithm for computing proposed loss is log-linear, O(nlog n).



Small AUM is correlated with large AUC
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Grey area is proposed loss, Area Under Min (AUM).
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Geometric interpretation of proposed loss

AuC AUM logistic.loss
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» Visualization of loss functions when there are two labels: one
positive, one negative.

» AUC is piecewise constant (abrupt changes 0-0.5-1),
gradient is zero, can not be used for learning.

» AUM is differentiable almost everywhere,
gradient can be used for learning.

» Min AUM happens when max AUC, correct rank (prediction
for positive label greater than for negative).

» Min logistic loss encourages correct labels.
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Standard logistic loss fails for highly imbalanced labels

Comparing logistic regression models (control experiment)

regularization: early stopping regularization: L2 norm
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0.985 0.990 0.995 1.000 0.985 0.990 0.995 1.000
Test AUC, median and quartiles over 10 random train sets
» Subset of zip.train/zip.test data (only 0/1 labels).
» Test set size 528 with balanced labels (50%/50%).
» Train set size 1000 with variable class imbalance.
» Loss is £[f(x;), yi]w; with w; = 1 for identity weights,

w; = 1/N,, for balanced, ex: 1% positive means
w; € {1/10,1/990}.



Linear learning algorithms in unbalanced image data

(b) AUM compared to baselines
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> Zip data set (digits), 16x16 images, ten classes, only use 0/1.

» Imbalanced train set with 1000 images (discard some data).

> Balanced test: 528 images overall (264 of each class).

» Linear model, full gradient, early stopping regularization.

» Squared hinge all pairs is a classic/popular surrogate loss
function for AUC optimization. (Yan et al. ICML 2003)



Neural network with stochastic gradient and a time budget

S data_set: FashionMNIST data_set: MNIST
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» (Fashion)MNIST data, 28x28 images, binarized ten class
problem (0-4:negative, 5-9:positive).

» Unbalanced train set with 300 positive, 30,000 negative
examples (~1% positive).

» Balanced test set of 10,000 images (~50% positive).

P> LeNeth convolutional network, average pooling, ReLU
activation, batch size 1000, max 10 epochs, early stopping.

» AUM.rate: area under min(FPR,FNR), rates in [0,1].

AUM.count: area under min(FP,FN), number of errors.

v

» Proposed AUM losses similar to/better than logistic loss.



Proposed AUM has nearly linear computation time
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n = number of predicted values = size of gradient vector

Log-log plot, so slope indicates time complexity class.
Logistic O(n).

AUM O(nlog n). (proposed)

Squared Hinge All Pairs O(n?). (Yan et al. ICML 2003)
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Discussion and Conclusions

>

>

ROC curves are used to evaluate binary classification
algorithms, especially with unbalanced labels.

We propose a new loss function, AUM=Area Under
Min(FP,FN), which is a differentiable surrogate of the sum of
Min(FP,FN) over all points on the ROC curve.

We propose new algorithm for efficient log-linear AUM and
directional derivative computation.

Implementations available in R/C++ and python/torch:
https://cloud.r-project.org/web/packages/aum/
https://tdhock.github.io/blog/2022/aum-learning/

Empirical results provide evidence that learning using AUM
minimization results in maximizing Area Under ROC Curve.

Future work: exploiting piecewise linear structure of the AUM
loss, other model classes, other problems/objectives.


https://cloud.r-project.org/web/packages/aum/
https://tdhock.github.io/blog/2022/aum-learning/

Thanks and come visit the ML lab in Flagstaff!
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