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Problem: supervised binary classification

I Given pairs of inputs x ∈ Rp and outputs y ∈ {0, 1} can we
learn f (x) = y?

I Example: email, x =bag of words, y =spam or not.

I Example: images. Jones et al. PNAS 2009.

Most algorithms (SVM, Logis-
tic regression, etc) minimize
a differentiable surrogate of
zero-one loss = sum of:
False positives: f (x) = 1 but
y = 0 (predict budding, but
cell is not).
False negatives: f (x) = 0
but y = 1 (predict not bud-
ding but cell is).



Receiver Operating Characteristic (ROC) Curves

I Classic evaluation method from the signal processing
literature (Egan and Egan, 1975).

I For a given set of predicted scores, plot True Positive Rate vs
False Positive Rate, each point on the ROC curve is a
different threshold of the predicted scores.

I Best classifier has a point near upper left (TPR=1, FPR=0),
with large Area Under the Curve (AUC).



ROC curves useful for imbalanced problems

I At default prediction threshold (D), glmnet has fewer errors.

I At FPR=4%, xgboost has fewer errors.



Research question and new idea

Can we learn a binary classification function f which directly
optimizes the ROC curve?
I Most algorithms involve minimizing a differentiable surrogate

of the zero-one loss, which is not the same.
I The Area Under the ROC Curve (AUC) is piecewise constant

(gradient zero almost everywhere), so can not be used with
gradient descent algorithms.

I We propose to encourage points to be in the upper left of
ROC space, using a loss function which is a differentiable
surrogate of the sum of min(FP,FN).
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Problem: unsupervised changepoint detection

I Data sequence z1, . . . , zT at T points over time/space.
I Ex: DNA copy number data for cancer diagnosis, zt ∈ R.
I The penalized changepoint problem (Maidstone et al. 2017)

arg min
u1,...,uT∈R

T∑
t=1

(ut − zt)
2 + λ

T∑
t=2

I [ut−1 6= ut ].

Larger penalty λ
results in fewer
changes/segments.

Smaller penalty
λ results in more
changes/segments.



Problem: weakly supervised changepoint detection

I First described by Hocking et al. ICML 2013.
I We are given a data sequence z with labeled regions L.
I We compute features x = φ(z) ∈ Rp and want to learn a

function f (x) = − log λ ∈ R that minimizes label error (sum
of false positives and false negatives), or maximizes AUC.



Weakly supervised changepoint detection problem setting

Hocking TD. Introduction to supervised changepoint detection. International

useR2017 conference tutorial.

I Black dots are data sequences in which we want to find
changepoints (each panel is a separate sequence).

I Colored rectangles are weak/partial labels from an expert.
I Want accurate predictions on new/unlabeled regions.



Empirical test error rates in 10-fold cross-validation

Hocking TD, Rigaill G, Bach F, Vert J-P. Learning Sparse Penalties for Change-point

Detection using Max Margin Interval Regression. ICML’13.

I Proposed penalty learning methods (m ≥ 1 features with
linear weights to learn, R package penaltyLearning) have
much smaller error rates than previous unsupervised models
(BIC, mBIC) and constant method (cghseg.k).

I In changepoint detection, evaluation using predicted error
rates can be misleading/unfair for the same reasons as in
binary classification.



Empirical evaluation using AUC

Maidstone R, Hocking TD, Rigaill G, Fearnhead P. On optimal multiple changepoint

algorithms for large data. Statistics and Computing (2016).

I Proposed FPOP (R package fpop), computes optimal solution
to penalized changepoint problem.

I ROC curve computed by adding constants to penalty λ
(penaltyLearning::ROChange in R).



Evaluating peak detection algorithms using AUC

Hocking TD, Rigaill G, Fearnhead P, Bourque G. Constrained Dynamic Programming

and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data.

Journal of Machine Learning Research 21(87):1-40, 2020.

Proposed GPDPA (R package PeakSegOptimal) has larger AUC
than previous algorithms.



Evaluating a new algorithm with label constraints

Hocking TD, Srivastava A. Labeled Optimal Partitioning. Accepted in Computational

Statistics, arXiv:2006.13967.
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Proposed LOPART algorithm (R package LOPART) has
consistently larger test AUC than previous algorithms.
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Binary classification FP/FN functions

I We assume there are n observations and each observation
i ∈ {1, . . . , n} has a predicted score ŷi ∈ R and a
corresponding error function.

I In binary classification each observation i with a negative label
has an error function which results in a false positive if ŷi > 0.

I And each observation with a positive label has an error
function which results in a false negative if ŷi < 0.



Changepoint FP/FN functions may be non-monotonic
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I Optimal changepoint model may have non-monotonic error
(for example FN above), because changepoints at model size
s may not be present in model s + 1.

I Penalty values where the FP/FN changes can be efficiently
computed, penaltyLearning::modelSelection in R.

Hocking TD, Vargovich J. Linear Time Dynamic Programming for Computing

Breakpoints in the Regularization Path of Models Selected From a Finite Set. Journal

of Computational and Graphical Statistics (2021).



Algorithm inputs: predictions and label error functions

I Each observation i ∈ {1, . . . , n} has a predicted value ŷi ∈ R.
I Breakpoints b ∈ {1, . . . ,B} used to represent label error via

tuple (vb,∆FPb,∆FNb, Ib).
I There are changes ∆FPb,∆FNb at predicted value vb ∈ R in

error function Ib ∈ {1, . . . , n}.

Binary classification
Changepoint detection
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Proposed surrogate loss, Area Under Min (AUM)

I Threshold tb = vb − ŷIb = τ(ŷ)q is largest constant you can
add to predictions and still be on ROC point q.

I Proposed surrogate loss, Area Under Min (AUM) of total
FP/FN, computed via sort and modified cumsum:

FPb =
∑

j :tj<tb

∆FPj , FPb =
∑

j :tj≤tb

∆FPj ,

FNb =
∑

j :tj≥tb

−∆FNj , FNb =
∑

j :tj>tb

−∆FNj .
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(ŷ
) 3

=
7

τ
(ŷ
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Small AUM is correlated with large AUC



Proposed algorithm computes two directional derivatives

I Gradient only defined when function is differentiable, but
AUM is not differentiable everywhere (see below).

I Directional derivatives always computable (R package aum),

∇v(−1,i)AUM(ŷ) =∑
b:Ib=i

min{FPb,FNb} −min{FPb −∆FPb,FNb −∆FNb},

∇v(1,i)AUM(ŷ) =∑
b:Ib=i

min{FPb + ∆FPb,FNb + ∆FNb} −min{FPb,FNb}.

Proposed learning algo uses
mean of these two directional
derivatives as “gradient.”
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AUM gradient descent results in increased train AUC for a
real changepoint problem

I Left/middle: changepoint problem initialized to prediction
vector with min label errors, gradient descent on prediction
vector.

I Right: linear model initialized by minimizing regularized
convex loss (surrogate for label error, Hocking et al. ICML
2013), gradient descent on weight vector.



Learning algorithm results in better test AUC/AUM for
changepoint problems

I Five changepoint problems (panels from left to right).

I Two evaluation metrics (AUM=top, AUC=bottom).

I Three algorithms (Y axis), Initial=Min regularized convex loss
(surrogate for label error, Hocking et al. ICML 2013),
Min.Valid.AUM/Max.Valid.AUC=AUM gradient descent with
early stopping regularization.

I Four points = Four random initializations.



Learning algorithm competitive for unbalanced binary
classification

I Squared hinge all pairs is a classic/popular surrogate loss
function for AUC optimization. (Yan et al. ICML 2003)

I All linear models with early stopping regularization.



Comparable computation time to other loss functions

I Logistic O(n).

I AUM O(n log n). (proposed)

I Squared Hinge All Pairs O(n2). (Yan et al. ICML 2003)

I Squared Hinge Each Example O(n). (Hocking et al. ICML
2013)
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Discussion and Conclusions, Pre-print arXiv:2107.01285

I ROC curves are used to evaluate binary classification and
changepoint detection algorithms.

I We propose a new loss function, AUM=Area Under
Min(FP,FN), which is a differentiable surrogate of the sum of
Min(FP,FN) over all points on the ROC curve.

I We propose new algorithm for efficient AUM and directional
derivative computation.

I Implementations available in R and python/torch:
https://cloud.r-project.org/web/packages/aum/

https://tdhock.github.io/blog/2022/aum-learning/

I Empirical results provide evidence that learning using AUM
minimization results in ROC curve optimization (encourages
monotonic/regular curves with large AUC).

I Future work: other model classes, sort-based surrogates for
other problems/objectives such as information retreival.

https://cloud.r-project.org/web/packages/aum/
https://tdhock.github.io/blog/2022/aum-learning/


Thanks to co-author Jonathan Hillman! (second from left)

Contact: toby.hocking@nau.edu
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Looping ROC curve, simple synthetic example

I Non-monotonic FP/FN can result in looping ROC curve.

I AUC can be greater than one (dark grey area double counted,
red area negative counted).

I Loops have very sub-optimal points (large min error, for
example q=4), so do we want to maximize AUC?

I Minimize Area Under Min (AUM) instead, which encourages
monotonic ROC curve with points in upper left (small min
error, for example q=1,6,7).
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Two real changepoint data sets

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/


Two real changepoint error functions

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/


Total error as a function of constant added to predictions

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/


Corresponding ROC curves

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/


Demonstration of AUC/AUM computation

https://bl.ocks.org/tdhock/raw/545d76ea8c0678785896e7dbe5ff5510/
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Real data example with AUC greater than one

I n = 2 labeled changepoint problems.

I Prediction difference=4 ⇒ AUC=1 and AUM=0.

I Prediction difference=5 ⇒ AUC=2 and AUM> 0.

I AUM is continuous L1 relaxation of piecewise constant Sum
of Min (SM).

I AUM is differentiable almost everywhere.

I Main new idea: compute the gradient of this function and use
it for learning.



More notation

I First let {(fpt(ŷ)q, fnt(ŷ)q, τ(ŷ)q)}Qq=1 be a sequence of Q
tuples, each of which corresponds to a point on the ROC
curve (and an interval on the fn/fp error plot).

I For each q the fpt(ŷ)q, fpt(ŷ)q are false positive/negative
totals at that point (in that interval) whereas τ(ŷ)q is the
upper limit of the interval.

I The limits are increasing, −∞ = τ(ŷ)0 < · · · < τ(ŷ)Q =∞.
I Then we define m(ŷ)q = min{fpt(ŷ)q, fnt(ŷ)q} as the min of

fp and fn totals in that interval.
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Our proposed loss function is

AUM(ŷ) =
Q−1∑
q=2

[τ(ŷ)q−τ(ŷ)q−1]m(ŷ)q.

It is a continuous L1 relaxation of the following non-convex Sum of
Min(FP,FN) function,

SM(ŷ) =
Q−1∑
q=2

I [τ(ŷ)q 6= τ(ŷ)q−1]m(ŷ)q =
∑

q:τ(ŷ)q 6=τ(ŷ)q−1

m(ŷ)q.



Definition of data set, notations

I Let there be a total of B breakpoints in the error functions
over all n labeled training examples.

I Each breakpoint b ∈ {1, . . . ,B} is represented by the tuple
(vb,∆FPb,∆FNb, Ib), where the Ib ∈ {1, . . . , n} is an
example index, and there are changes ∆FPb,∆FNb at
predicted value vb ∈ R in the error functions.

I For example in binary classification, there are B = n
breakpoints (same as the number of labeled training
examples); for each breakpoint b ∈ {1, . . . ,B} we have vb = 0
and Ib = b. For breakpoints b with positive labels yb = 1 we
have ∆FP = 0,∆FN = −1, and for negative labels yb = −1
we have ∆FP = 1,∆FN = 0.

I In changepoint detection we have more general error functions,
which may have more than one breakpoint per example.



Proposed algorithm uses sort to compute AUM and
directional derivatives

1: Input: Predictions ŷ ∈ Rn, breakpoints in error functions
vb,∆FPb,∆FNb, Ib for all b ∈ {1, . . . ,B}.

2: Zero the AUM ∈ R and directional derivatives D ∈ Rn×2.
3: tb ← vb − ŷIb for all b.
4: s1, . . . , sB ← SortedIndices(t1, . . . , tB).
5: Compute FPb,FPb,FNb,FNb for all b using s1, . . . , sB .
6: for b ∈ {2, . . . ,B} do
7: AUM += (tsb − tsb−1

) min{FPb,FNb}.
8: for b ∈ {1, . . . ,B} do
9: DIb,1 += min{FPb,FNb} −min{FPb −∆FPb,FNb −∆FNb}

10: DIb,2 += min{FPb + ∆FPb,FNb + ∆FNb} −min{FPb,FNb}
11: Output: AUM and matrix D of directional derivatives.

I Overall O(B logB) time due to sort.



Receiver Operating Characteristic (ROC) curve

Classic evaluation method from the signal processing literature
(Egan and Egan, 1975).
I Binary classification algo gives predictions [ŷ1, ŷ2, ŷ3, ŷ4].
I Each point on the ROC curve is the FPR/TPR if you add c to

the predictions, [ŷ1 + c, ŷ2 + c , ŷ3 + c , ŷ4 + c].
I Best point in ROC space is upper left (0% FPR, 100% TPR).
I Maximizing Area Under the ROC curve (AUC) is a common

objective for binary classification, especially for imbalanced
data (example: 99% positive, 1% negative labels).
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I AUC=1 best.

I AUC=0.5 for constant prediction
(usually worst).



Area Under ROC curve, synthetic example

I Labels = [1,0,0,...,1,1,0] (20 labels, 10 positive, 10 negative).

I Predictions = [-4, -4, -4, ..., -2, -2, -2].

I No constant added c = 0, q = 1, everything predicted
negative, so no false positives, but no true positives.

I Add c = 3⇒ [-1, -1, -1, ..., 1, 1, 1], 1 FP and 9 TP, q = 2.

I Add c = 5⇒ [1, 1, 1, ..., 3, 3, 3], all FP and TP, q = 3.
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Real data example when ROC curves are useful

Data from collaboration with SICCS professor Patrick Jantz, about
predicting presence/absence of trees in different locations.

I glmnet: L1-regularized linear model.

I major.class: featureless baseline (ignores inputs, always
predicts most frequent class label in train set)

I xgboost: gradient boosted decision trees.

I Which algorithm is the most accurate?

https://bl.ocks.org/tdhock/raw/

172d0f68a51a8de5d6f1bed7f23f5f82/

https://bl.ocks.org/tdhock/raw/172d0f68a51a8de5d6f1bed7f23f5f82/
https://bl.ocks.org/tdhock/raw/172d0f68a51a8de5d6f1bed7f23f5f82/


Real data example, interactive AUC/AUM demo

http://bl.ocks.org/tdhock/raw/

e3f56fa419a6638f943884a3abe1dc0b/

http://bl.ocks.org/tdhock/raw/e3f56fa419a6638f943884a3abe1dc0b/
http://bl.ocks.org/tdhock/raw/e3f56fa419a6638f943884a3abe1dc0b/


Standard logistic loss fails for highly imbalanced labels

I Subset of zip.train/zip.test data (only 0/1 labels).
I Test set size 528 with balanced labels (50%/50%).
I Train set size 1000 with variable class imbalance.
I Loss is `[f (xi ), yi ]wi with wi = 1 for identity weights,

wi = 1/Nyi for balanced, ex: 1% positive means
wi ∈ {1/10, 1/990}.



Error rate loss is not as useful as error count loss

I AUM.count is as described previously: error functions used to
compute Min(FP,FN) are absolute label counts.

I AUM.rate is a variant which uses normalized error functions,
Min(FPR,FNR).

I Both linear models with early stopping regularization.



New max-margin loss function for penalty learning

Hocking TD, Rigaill G, Bach F, Vert J-P. Learning Sparse Penalties for Change-point

Detection using Max Margin Interval Regression. ICML’13.

Main new idea: learning a penalty/smoothing by minimizing a
margin-based differentiable loss function (surrogate for label error),
similar to Support Vector Machine and censored regression.



Weakly supervised peak detection in genomic data

Hocking TD, Rigaill G, Fearnhead P, Bourque G. Constrained Dynamic Programming

and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data.

Journal of Machine Learning Research 21(87):1-40, 2020.

Problem setting: weakly supervised peak detection in genomic data
(want to learn peak pattern from partial labels, and predict
consistently/accurately in unlabeled regions).



New up-down constraints on adjacent segment means

Hocking TD, Rigaill G, Fearnhead P, Bourque G. Constrained Dynamic Programming

and Supervised Penalty Learning Algorithms for Peak Detection in Genomic Data.

Journal of Machine Learning Research 21(87):1-40, 2020.

Proposed fast dynamic programming algorithm for computing
optimal changepoints subject to up-down constraints on adjacent
segment means.
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