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Motivation and data for predicting growth from genetics

> Goal: look at past experiments to see which genes influence
growth.

» Collaboration with Jeff Propster, based on data from Hungate
et al, mBio (2021), Stone et al, ISME (2023)

> Seven past experiments with no omics data, but gqSIP for total
of 188,826 Amplicon Sequence Variants (ASVs), including
Arizona elevation gradient (experiment=dim),
Quantitative Microbial Ecology (experiment=gme),
and others (ant, drp, eag, sro, win).

» picrust2 (Douglas et al, Nature 2020) infers frequency of
8,380 genes in the ASV genome (integer from 0 to 10).

» Can we predict a taxon's qSIP growth/activity from its vector
of gene frequencies?



Machine learning predictive analysis of qSIP data

» Inputs/features x € R is vector of frequencies for D = 8380
genes (range from 0 to 10).

» Output y € R is relative activity/growth per day from qSIP
(excess atom fraction/EAF normalized by maximum isotope
enrichment and incubation length, ranging from 0 to 0.3315).

» Want to learn f(x) = y (predict growth from genes).

» One hypothesis in these data: can learn f on mixed conifer
(MC) controls in experiment=dim (room temp), and
accurately predict experiment=gme at temp=15C (or vice
versa).

» Question: is this expectation consistent with the data?

» Answer by using 10-fold cross-validation: train on one
experiment or other, quantify prediction error on test set.
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Comparison 1: controls in different experiments
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Data table with N = 7710 rows/observations (ASVs), across
two experiments dim=3120, qme=4590.
D = 8380 gene features.
We compare two learning algorithms
cv_glmnet: L1 regularized linear model (LASSO), small
subset of important genes selected and used for
prediction (other un-important genes are not
used for prediction).
featureless ignore all genes/features, and always predict
mean output in train set.

If there is any non-trivial relationship/pattern learned between
inputs and outputs, then linear model should have smaller
prediction error than featureless.

If patterns are similar in different groups/experiments (dim
and gme), then linear model should have similar prediction
error, when trained on other groups/experiments.
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controls between experiments
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controls between experiments
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Interpretation of linear model prediction error and weights

» Hypothesis was: expect we can learn f on mixed conifer (MC)
controls in experiment=dim (room temp), and accurately
predict experiment=gme at temp=15C (or vice versa).

» Prediction error cross-validation analysis on previous slide is
not consistent with that hypothesis.

» So there should be a different prediction function in each
experiment. What is the difference?

» The L1 regularized linear model (LASSO) can be interpreted
in terms of which genes are important/used for prediction
(non-zero weights/coefficients) and others are ignored
(weights=0, not used for prediction).

» Compute and plot weights which are non-zero/important in
all 10 train/test splits of cross-validation.



Gene with non-zero linear model weight,
for all 10 train/test splits in one experiment
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Comparison 2: control versus carbon additions

» N = 60877 samples total, in 3 groups/treatments:
control=17225, C=23214 (carbon added), CN=20438

(carbon and nitrogen added).
» Same D = 8380 gene features.

» Can we train on one group/treatment, and predict accurately
on another?
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control vs carbon additions
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control vs carbon additions
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featureless -

Train on CN/control(other)

control vs carbon additions

Test group: Test g,r\loup: Test g{oulp:
control

Not possible to train

Predicting on CN
almost as small error as g on C/CN and accurately

more difficult

cv_glmnet train on C(same) predict on control
featureless - occaman o 00 aom @O O O
cv_glmnet - | o omano o omm O 0 COO®
featureless - oo @ O 00 axm o@D @O O
cv_glmnet- amo o O @o O OO ® 00

B (Y B Y B ) Q PRI N EENNC]

0¥ 2% 60 ge® 4 4e® ° 00030 00036 QQQQ oo°

Mean squared prediction error (test set)

e

J3Y30
:sdnolb :sdnoib
uled)

swes
:sdnoib
uledl

uled.



Discussion and conclusions

» Often we want to know if we have similar or different patterns
in different data groups (train on one experiment/treatment,
predict on another).

» Cross-validation can be used to determine the extent to which
we can train on one group, and accurately predict on another.

» Machine learning algorithms like L1 regularized linear models
(LASSO/cv_glmnet) are additionally interpretable in terms of
which features are used for prediction (can be compared
between models trained on different groups).

» Free/open-source software available: mlr3resampling R
package on CRAN and
https://github.com/tdhock/mlr3resampling

» Let's collaborate! Contact: toby.hocking@nau.edu,
toby.hocking@r-project.org


https://github.com/tdhock/mlr3resampling

