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The R package quadprog provides the function solve.QP(D, d,A, b0), which solves the
following optimization problem:

min
b∈Rv

1

2
b′Db− d′b

subject to A′b � b0

(1)

where D ∈ Rv×v, d ∈ Rv, A ∈ Rv×k, b0 ∈ Rk, v is the number of optimization variables, k is
the number of inequality constraints, and x � y is componentwise inequality, which implies
xi ≥ yi for all i. We call this the “standard form” of a quadratic program. solve.QP is a
general-purpose quadratic programming solver that can be used for many things, but here
we will use it to solve several formulations of linear Support Vector Machines (SVM).

1 Download and install R and quadprog

If you use Linux install R using your package manager if possible. On other systems you can
download R from http://cran.univ-lyon1.fr/.

Once R is installed, the quadprog package can be downloaded and installed using the
following command line in R:

> install.packages("quadprog")

Then you can use the library(quadprog) command to get access to the solve.QP function.

2 Writing linear SVM in standard form

For a set of training points {(x1, y1), ..., (xn, yn)} with xi ∈ Rp and yi ∈ {−1, 1}, we stack
the xi and yi to form the matrix X ∈ Rn×p and the class vector y ∈ {−1, 1}n. The linear
C-SVM classifier for a new point x ∈ Rp is given by f(x) = β0 + β′x, where β0 ∈ R and
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β ∈ Rp are found as the solution to the following optimization problem:

min
β0∈R, β∈Rp, ξ∈Rn

C
n∑

i=1

ξi +
1

2
β′β

subject to ∀i, ξi ≥ 0

∀i, ξi ≥ 1− β0yi − β′xiyi

(2)

Before using the solver, provide answers to the following questions:

1. Write expressions for the standard form vectors and matrices b, D, d, A, b0 in terms of
the model parameters β0, β, ξ, C and data X, y. How many optimization variables are
there in terms of n and p? How many constraints? Hint: start with b = [ β0 β ξ ]′.

2. How would you calculate the model parameters after the solver gives you b? Discuss
the intercept β0, the normal vector β, the margin, and the support vectors. Hint: the
support vectors are the training points i that satisfy yif(xi) ≤ 1.

3. Given a new data point x ∈ Rp, how would you predict its class?

Now write a function linear.svm.qp(X,y,C) that implements this optimization prob-
lem using solve.QP for a matrix of points X ∈ Rn×p, a vector of labels y ∈ {−1, 1}n, and
the margin size parameter C ∈ R. The function should return a list of estimated coefficients
β0, β, size of the margin, and matrix of support vectors.

3 Kernel SVM primal problem

SVM can be extended by introducing a kernel function κ : Rp×Rp → R and then calculating
the kernel matrix K ∈ Rn×n where Kij = κ(xi, xj). Then we replace all the inner products
with kernel evaluations, giving the prediction function f(x) = β0 +

∑n
i=1 αiκ(x, xi) and the

following optimization problem:

min
β0∈R, α∈Rn, ξ∈Rn

C

n∑
i=1

ξi +
1

2
α′Kα

subject to ∀i, ξi ≥ 0

∀i, ξi ≥ 1− yiβ0 − yiα
′Ki

(3)

where Ki = [ κ(x1, xi) · · · κ(xn, xi) ]′ is the i-th column of K.
For linear SVM, we have κ(xi, xj) = x′ixj, so K = XX ′. Answer the same questions as

above for this optimization problem. Write a function linear.kernel.svm.primal.qp(X,y,C),
as above, that implements it.
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4 Kernel SVM dual problem

The optimization problem can be simplified by taking the dual:

min
α∈Rn

1

2
α′Kα− α′y

subject to
n∑

i=1

αi = 0 and ∀i, 0 ≤ yiαi ≤ C
(4)

Answer the same questions as above for this problem, then write a function
linear.kernel.svm.dual.qp(X,y,C) which implements it.

5 Comparison

Use simulated data in 2D or data(ALL,package="ALL") to compare the results of each
function above to the results obtained from the ksvm() function from library(kernlab).
Refer to the TP to see how to simulate data, install the ALL package, and use the ksvm()

function: http://cbio.ensmp.fr/~jvert/teaching/2011mines/index.html

1. For X, y, C fixed, do all the functions yield the same support vectors, margin, and
parameters β0, β, α? Do the estimated functions f(x) agree? If not, can you propose
changes to the algorithms to make the parameterizations agree?

2. How many parameters are involved in each optimization problem, in terms of n and
p? Under what circumstances is it advantageous to use each algorithm?

3. How long does each algorithm take? Hint: you can use the system.time() function
to get the time it takes to execute each algorithm.

3

http://cbio.ensmp.fr/~jvert/teaching/2011mines/index.html

