
HPC Day: Advanced
Topics (Part 1)

Presented By: Joseph Guzman
Date: 2025-09-19

Link to slides:
 http://rcdata.nau.edu/hpcpub/workshops/advanced_topics_p1.pdf

http://rcdata.nau.edu/hpcpub/workshops/advanced_topics_p1.pdf

Overview

• 1. ARC Support Bot

• 2. Package Management

• 3. OnDemand Apps

• 4. Free QoS

Section 1: ARC Support Bot

• Navigate to our main website: https://in.nau.edu/arc

• Click Services on the header bar

• Then click the “ARC Support Bot” option

• This webpage will have the main link, which may change

New Experimental Chat Bot

https://in.nau.edu/arc

• The bot was made in Copilot Studio

• No code besides text conversion of docs

• Internally, it has two parts: pre-planned topics and a RAG

• Currently, it has no other knowledge sources
• If a prompt does not match any topic or any doc, it will fail

• Goal: simulate a customer service rep who has memorized our
public-facing documentation

• Disclaimer: The bot relies on LLMs which can make many
true-sounding errors. Email ask-arc@nau.edu to talk to a person!

How it works (subject to change)

mailto:ask-arc@nau.edu

Section 2: Package Management

Lmod
● Loadable Module system, includes packages that were created by us, the ARC team

○ Many of these were requested by researchers i.e. davinci
● view available packages by running: module av

Anaconda
● General-purpose package manager, with a focus on Python and R packages
● view available packages here: https://anaconda.org/

pip
● De-facto standard package manager for python packages
● view available packages here: https://pypi.org/

CRAN
● Repository of packages for R
● view packages here: https://cran.r-project.org/index.html

Singularity
● Docker-compatibile containerization tool

Spack
● Curated HPC package manager, created by LLNL

configure+make
● Standard tools for source compilation in Linux

.rpm files
● package recipe file for RHEL-based distros
● The equivalent in debian-based are .deb files

Packaging Tools Overview

If you are considering one of
these tools then you should
contact us: ask-arc@nau.edu

https://anaconda.org/
https://pypi.org/
https://cran.r-project.org/index.html
mailto:ask-arc@nau.edu

● First, check if we have an Lmod module for it
○ you’d examine output of module av mypkg
○ if already there and you need a new version let us know

● Use a login node (i.e. wind) for these next steps, we have additional -devel packages
● If there’s no Lmod module try the language specific package manager

○ pip install mypkg command in python
■ Note: our anaconda3 module bundles many useful python pkgs (i.e. numpy)

○ install.packages(“mypkg”) function in R
● If you get any errors there, then check if the package is available on conda

○ https://anaconda.org/
● You could try to use conda for everything, but there are a couple downsides

○ many more packages exist in PyPI/CRAN
○ conda does not help with source installs for unindexed packages
○ conda environments will be larger on disk

● If still unsure, then create a ticket with us.
● Faculty members can submit a software install request

○ we create new Lmod modules for these

How do I install X on monsoon?

https://anaconda.org/

1. Check what Lmod modules you have loaded:
module list

2. Unload a module:
module unload <pkg>

3. Unload all modules:
module purge

● OR login again

4. List all modules:
module av

5. Search for a module:
module av <pkg>

Lmod Tutorial

6. Load default module version:
module load <pkg>

7. Load specific module version (preferred):
module load <pkg>/<version>
● Why is is it preferred to specify the

version? Because we update Lmod
packages, especially important for
researchers who use conda

8. View module details
module display <pkg>/<version>

pip Tutorial

● Its best to use virtual environments to isolate python package on a per-project basis
○ Because python packages tend to have complex dependencies
○ Default is to install packages in ~/.local

● The web interface at https://pypi.org/ is the only way to search for packages
○ Also this is the best way to lookup the module’s github repo and documentation

Example:
python3 -m venv ~/myenv
. ~/myenv/bin/activate
pip3 install beautifulsoup4
python3 -c "import bs4; print(bs4.__version__)"

https://pypi.org/

R install.packages() Tutorial

● R will normally use gcc or g++ in the background to compile your R packages
○ For this reason, you need to execute install.packages() on a login node

● R will install packages by default into ~/R/<version>
○ Not usually necessary to segment your R packages, but it is possible by simply running

mkdir and setting the R_LIBS_USER env variable to that path

Example:
module load R/4.1.2
R
install.packages(“jsonlite”)
library(jsonlite)
packageVersion(“jsonlite”)

Miniforge Tutorial (part 1)

● You must create a conda environment before installing any packages
○ We’d again suggest to create one on a per-project basis

● conda packages tend to be quite large, you may quickly run out of space in /home
○ You can request more /home space and we’ll give you 20GB
○ or you can try to save space by creating a spec-file.txt and removing the original conda environment
○ or you can configure conda to put things in /scratch (see: https://in.nau.edu/arc/faqs/#configuring)

● You can create a conda environment and then use another package manager like pip to install additional packages
○ But if you try to use conda again, you can create package conflicts, as conda cannot keep track of packages installed

by other means
● I’ll demo conda with the miniforge3 module

○ miniforge is an alternative distribution of conda, there are only two differences:
■ miniforge has a more minimal base environment (does not come with numpy or matplotlib for example)
■ miniforge comes with the much faster “mamba” installer

○ Once installed you can use the “conda” and “mamba” commands interchangeably, they do exactly the same thing,
except when it comes to installing something you should use mamba install -c <channel> <pkg-name>

https://in.nau.edu/arc/faqs/#configuring

Miniforge Tutorial (part 2)

● Example:
○ module load miniforge3

mamba create -n myenv
mamba activate myenv
mamba install -c conda-forge numpy

● Now try out the web search ability
○ Visit: https://anaconda.org/search
○ Search for the “hexyl” package (it’s a hex viewer, similar use-case as the xxd and od commands)
○ Make a new conda environment and try out the installation command it gives you (replace “mamba” with

“conda” to use the fast installer)
○ Try out the hexyl command:

■ i.e.
● read your .bashrc file

○ hexyl ~/.bashrc | less
● read random binary data

○ hexyl <(head -c 1K /dev/urandom) | less

https://anaconda.org/search

Spack Tutorial

● Search for a package:
○ spack list mypkg
○ spack info mypkg

● Two workflows for installing packages:
○ direct installs

■ Unlike conda, spack allows for installing and loading packages without an environment. Spack is acutely aware of
the dependencies specific to each package.

■ Switch to using environments if you have a complicated set of packages to avoid repetitive loads commands.
■ Example:

● module load spack
spack install gzip
spack load gzip

○ install into an environment
■ Example:

● module load spack
spack env create -d ./myenv
spack env activate ./myenv
spack add gzip
spack install

Section 3: OnDemand Apps

VSCode App for Ondemand

● We’re using this implementation for our Open Ondemand (OOD) server:
https://github.com/coder/code-server
○ There may be some limitations when compared to the desktop version

■ Feel free to reach out via service-now if you encounter any
● Use-Case?

○ Arguably: OOD’s VSCode > OOD’s built-in file editor, local VSCode, and
terminal-based editors

○ OOD’s VSCode as a cluster-local app will integrate with our local software and hardware
stack; and experience less latency when doing cluster-local operations

○ Use the full suite of VSCode features
■ including: code-completion, debuggers, and a terminal app

● Alternatives?
○ VSCode is a generalist editor, not a viable replacement for niche GUI editing

environments (such as Jupyter and RStudio)
○ If you’ve spent the time on configuration, vim/emacs is capable of much the same as

VSCode. I’d continue using these if you are familiar with them and do not require
significant GUI usage

https://github.com/coder/code-server

Getting started with VSCode Plugins

● To install any plugin, press C-S-x to enter the menu
● Code-completion and validation plugins

○ For Python, try: python-lsp-server
○ For C/C++, try: llvm-vs-code-extensions
○ For shell script, try: ShellCheck

● Find more language servers here:
○ https://microsoft.github.io/language-server-protocol/implementors/

servers/
● Many, many more, check out this curated list:

https://github.com/viatsko/awesome-vscode

https://microsoft.github.io/language-server-protocol/implementors/servers/
https://microsoft.github.io/language-server-protocol/implementors/servers/
https://github.com/viatsko/awesome-vscode

Launching the app

● Similar to the other interactive apps:
○ Visit https://ondemand.hpc.nau.edu
○ Click on the “Interactive Apps” Tab
○ Click “VScode”
○ Fill out the form, submit, and click “Connect to VSCode” once it

starts
● Note: VSCode plugins can use up significant space in /home

○ Primarily in these directories:
■ ~/.config/code-server
■ ~/.local/share/code-server

https://ondemand.hpc.nau.edu

Other Notable Apps

● File Explorer
● Job Composer
● Desktop
● Jupyterlab
● RStudio
● Ansys
● Matlab

What’s your favorite programming
language or editor/IDE?

Section 4: Free QoS

What is a Slurm QOS?

● The QOS (Quality of Service) value associated with a Slurm job modifies the scheduling parameters
○ By default your QOS value is your group name

■ Generally, there is no scheduling priority difference between groups
○ Other QOS values include:

■ debug
● set this qos for short low-resource jobs to monitor or debug your running job

○ i.e. to run a small testcase
● can only run one debug job at a time

■ free
● set this qos for your low-priority jobs

○ that way you do not impact your group’s fairshare usage
○ improves scheduling priority of non-free jobs while the cluster is busy

■ gpu
● allocated automatically, please use #SBATCH -G 1 to select a gpu in your job script

Slurm

● Selecting the “free” qos for srun
○ srun -q free hostname
○ srun --qos=free hostname

● OR in a job script:
○ #SBATCH -q free
○ #SBATCH --qos=free

● View the QOS of your running jobs:
○ squeue -a -u $USER -O jobid,jobname,qos,state

● View the QOS of a past job:
○ sacct -j <jobid> -o jobid,jobname,qos,state -X

Why should I use the free qos?

● The purpose of the free qos is to allow users to distinguish between low-priority
and high-priority jobs.
○ If everyone uses this for low-priority jobs, then there will generally be less

resource contention for high priority jobs
● Warning: Your jobs in the free qos are “preemptable”

○ If your job is running and slurm allocates resources your job is using for a
non-free qos job, then your job will be preempted and requeued
■ Your job terminates at that time to be restarted later
■ Unsaved progress will be lost

● To mitigate this behavior, some programs will create checkpoints for
the progress so that it can resume from the checkpoint

● Demo on an idle node

END
Need to contact us?

● Email:
○ ask-arc@nau.edu

● Zoom Office Hours
○ Every Wednesday
○ Alternates Between 1:00PM-2:00PM and 2:00PM-3:00PM
○ https://in.nau.edu/arc/office-hours/

Questions?

mailto:ask-arc@nau.edu
https://in.nau.edu/arc/office-hours/

Section Header/Footer

ALT TITLE

