
HPC Day: Advanced
Topics (Part 2)

Presented By: Joseph Guzman
Date: 2025-09-19

Link to slides:
 http://rcdata.nau.edu/hpcpub/workshops/advanced_topics_p1.pdf

http://rcdata.nau.edu/hpcpub/workshops/advanced_topics_p1.pdf

Overview

● 1. Parallelism - Slurm Arrays and MPI Programming
● 2. Globus and File Management

Section 1: Parallelism - Slurm Arrays
and MPI Programming

Types of Parallelism

● Each of your jobs can be categorized as:
○ Serial
○ Parallel (which we can describe as being one of these three types)

■ 1. Shared Memory
● Independent logical tasks are able to share memory

○ Meaning you can have a C pointer to that object without
any additional load ops

● Heuristic: Runs on a single node
■ 2. Distributed Memory

● Independent logical tasks are not able to share memory
● Heuristic: Runs on multiple nodes

■ 3. Hybrid
● Uses a mix of both

Methods of Parallelism

● Serial + Multi-Processing
○ Tools: Slurm Arrays, pipes, sockets, py multiprocessing module, etc.

● Shared Memory
○ Multithreading, Shared Memory (inter-process)

■ Tools: POSIX Thread API (pthreads C library)
○ (inter-process) Shared Memory

■ Tools: POSIX Shared Memory API, OpenMPI
● Distributed Memory

○ MPI (technically hybrid, but primarily distributed)
■ Tools: OpenMPI

○ Other network-enabled models (i.e. Client-Server, P2P, Load Balancing, etc.)
■ While these methods can enable parallelism, these models do not cater to

HPC like MPI does
● Hybrid Memory

○ Any combination of shared+distributed memory tools

Concurrency vs. Parallelism

● You can have concurrency
without parallelism.

● Using a parallel
programming tool, does not
mean that your job is
parallel.

Why use parallelism?

● Your code likely is not taking full advantage of the HPC environment
if it’s not using multiple threads or processes
○ Monsoon does have high capacity file storage, RAM availability,

GPUs, and network throughput.
○ But your serial computations will not happen any faster than they

would on your desktop.
● The primary goal of this presentation is to expose slurm arrays and

MPI to everyone.
○ These are tools that cater specifically to HPC environments.

● Note: if you’re making use of high-level code, your
packages/libraries may be parallelized in the backend (i.e.
tensorflow-distributed). You should still be aware of how that works.

What is a Slurm Job Array? (part 1)

● Slurm Job Arrays can be the easiest way to parallelize non-parallel code
○ If you find yourself executing a repetitive set of commands, or an

otherwise repetitive task
○ Then it’s likely that job arrays can help you

● A job array works like a loop
○ you can request a number of identical job allocations all at once
○ where you execute a different task in each job

● Job arrays simplify accounting later, and will allocate quicker
○ A single jobid can identify the X number of job array elements with

squeue/sacct/jobstats
■ Each job array element has a different suffix in the jobid as well

○ Executing thousands of individual sbatch commands can bog down the
cluster, so we prefer that researchers use job arrays where possible

What is a Slurm Job Array? (part 2)

Advantages:
● Submit one job script to

create many jobs
● Only need to keep track of

one jobid

Creating a Slurm Job Array
● You need to use sbatch, we always recommend setting SBATCH parameters in a

script file
● Components:

○ #SBATCH --array=x-y
■ replace ‘x’ and ‘y’ with an integer range (i.e. 1-10)
■ you can also have a comma-separated list

○ SLURM_ARRAY_TASK_ID
■ this is an environment variable that slurm sets when your job is executing
■ this environment variable will always be an integer that represents the

index of the job array element
○ (optional) #SBATCH --output=/path/to/my/output/jobname_%a.txt

■ %a is a meta string you can use in the filename argument with the
--output or the --error parameter that evaluates to the job index

■ %A works similarly, but for whole job arrays

Example: Counting Occurrences

● One of the classic embarrassingly parallel problem is counting
occurrences.
○ embarrassingly parallel or perfectly parallel describes a computing

problem that requires little to no communication between parallel tasks.
■ Communication and especially synchronization is the hard part of

parallel programming!
■ Some practical examples of embarrassingly parallel problems?

● BLAST queries
● Monte Carlo simulations
● Bruteforce Hashing
● ML Training Algorithms

■ We will be covering these two example problems:
● Counting Occurences
● Sorting

Counting Occurrences - Data

● All programs and data for this file are located here:
/packages/workshop/in-depth

● Load the module with this command: module load workshop/in-depth
● Input Data:

○ 10 input files
■ Each containing 100 million random words, one word per line
■ filepaths:

● /packages/workshop/in-depth/data/rand-words-1.txt
● …
● /packages/workshop/in-depth/data/rand-words-10.txt

● Sample:

Counting Occurrences - Serial
Implementation

● count-words.py
● reads from stdin and populates a

dictionary that holds the count
for each unique line

● behavior is similar to this GNU
coreutils command: uniq -c

Counting Occurrences - Serial
Execution

● (optional) make a new directory to store your work
○ i.e.:

■ mkdir /scratch/$USER/workshop
● The next example has large result files, use /scratch to avoid filling up your /home!

■ cd /scratch/$USER/workshop
● Load the workshop/in-depth module

○ module load workshop/in-depth
● Submit the job:

○ sbatch $JOBSCRIPT_DIR/cw-serial.sh
■ Note: JOBSCRIPT_DIR is an env var set when you load the module, all jobscripts discussed in

this workshop have a home there.

● Runtime: 13 minutes
○ Pretty slow!
○ But let’s use job arrays to speed it up!

Counting Occurrences - Divide and
Conquer

● Divide and Conquer is the general strategy to use
for most parallelizable problems.
○ Divide a large problem into smaller problems
○ Process those smaller problems in parallel
○ Combine results

Counting Occurrences - Job Array
(main script)

● cw-array.sh
● Critical pieces:

○ where I specify the
--array sbatch parameter

○ usage of the
SLURM_ARRAY_TASK_ID
environment variable

Counting Occurrences - Job Array
(aggregates results)

● cw-array-aggregate.sh
● Aggregates results by combining the results

of each job array element

● Submit this script with a dependency (optional):
■ sbatch -d afterok:<jobid> $JOBSCRIPT_DIR/cw-array-aggregate.sh

● replace <jobid> with the jobid of the main job array
● Why? -- You cannot aggregate the results before that job completes, it will error out

● Or you could submit normally, simply monitor your job to make sure its done first

Counting Occurrences - Slurm
Dependency Aside

● Slurm jobs launched via sbatch/srun/salloc can all make use of dependencies
● When a job has a dependency assigned to it, this means the job cannot start until a condition is

met
○ Often this can be useful for pipelining

■ if you have a step2 that should not run before step1 is completed for example
● as is the case in our example

○ Run man sbatch to read the details on how this works.
○ Some useful examples:

■ -d afterok:<jobid>
● do not start job until specified <jobid> completes

■ -d aftercorr:<jobid>
● do not start job array element, until corresponding job array element in <jobid>

completes
■ -d singleton

● do not start job until another job with the same name completes
○ useful for recurring jobs

Counting Occurrences - Job Array
Execution

● sbatch ./cw-array.sh
○ record the jobid that sbatch produces, edit cw-array.sh to use this value

● sbatch -d afterok:<jobid> ./cw-array-aggregate.sh
○ this script will create the final output file: ./results-aggregated.txt
○ verify that this produces the same results as before (lines may be in a

different order):
■ diff results-serial.txt results-aggregated.txt

● No edit to main count-words python script?
○ Correct, all I did to speed up the wallclock time was split it into parallel

jobs
● Execution Time?

○ under ~1.5 minutes
■ that’s the wallclock time, the aggregate CPU time is roughly equal

Counting Occurrences - MPI Python
Script

● count-words-mpi
○ A python script using mpi4py
○ It’s a reimplementation of count-words,

that’s made parallel with MPI
○ only the main body of the program is

shown to the left
● Not as trivial, but be glad it wasn’t in C++!
● The crucial part is the last if statement

○ the ranks range from 0-9
○ all ranks, aside from rank 0, send their

dictionaries to rank 0 with an MPI send
operation

○ rank 0 receives them with an MPI receive
operation, and prints the results to stdout

Counting Occurrences - MPI Python
Job Script

● Job Script:
○ cw-mpi.sh

● Almost identical to the original
cw-serial.sh
○ But notice the use of -n 10

here, this specifies 10 tasks
for MPI

Counting Occurrences - MPI
Execution

● sbatch ./cw-mpi.sh
● Main difference between this example and the job array?

○ We use MPI to aggregate results
○ Only slightly better computationally in this example

● Execution Time?
○ ~1.3 minutes

■ that’s the wallclock time, the aggregate CPU time is roughly equal

Section 2: Globus and File
Management

How do I move data to or from Monsoon?

Service Tools To Monsoon From Monsoon

SSH rclone, scp, rsync YES YES

SMB (a.k.a. samba, CIFS,
“network drive”)

File Explorer, Other desktop
client

YES YES

FTP/FTPS rclone, ftp YES NO

HTTP/HTTPS (Data Portal) browser, rclone, libcurl, etc NO YES

Cloud (i.e. google drive) browser, rclone, API, globus
(NAU gdrive only)

YES YES

Globus browser (asynchronous) YES YES

● Other?
○ You can use Monsoon as a client for other services. But above are the service types that we support. Monsoon acts

as a server for all of the services listed, except for “Cloud” and FTP/FTPS.

https://in.nau.edu/arc/data-portal/

OpenSSH and Creating SSH Keys

● Highly recommended to use an OpenSSH Client
○ Will provide the OpenSSH implementation of ssh, scp, etc.
○ On Mac, Linux, and *BSD this should be installed by default
○ On Windows most people would recommend PuTTY, but you may also be able to get the

Unix-centric OpenSSH client on new versions of windows with this command (see the
MS docs here):
■ Add-WindowsCapability -Online -Name OpenSSH.Client~~~~0.0.1.0

● To enhance security and convenience you can create an SSH key on your local machine.
○ ssh-keygen -t ed25519

● Then to use this key to log into monsoon you’d use this command:
○ ssh-copy-id abc123@monsoon.hpc.nau.edu
○ Now if you were to try to ssh into monsoon normally it will default to trying your key first,

instead of prompting you.
○ ssh abc123@monsoon.hpc.nau.edu

https://learn.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse?tabs=powershell#tabpanel_1_powershell

SSH-Based Tools and SMB

SSH
● scp

○ most simple, convenient for small downloads
● rsync

○ used for “syncing” a source and destination folder
■ performs better when you need to do partial downloads

● rclone
○ generalist tool, has support for many different service types

■ created primarily as a one-stop shop for interacting with cloud storage services
○ requires light configuration before using

SMB:
● Ideal for desktop usage
● Mount a network drive on your file explorer app
● Windows: \\shares.hpc.nau.edu\cirrus
● Mac: smb://shares.hpc.nau.edu/cirrus

Globus (Part 1)
● Specialized HPC webapp accessible at https://app.globus.org

○ Primarily used by research institutions
○ Use-case: moving large amounts of data across institutions
○ Need the globus personal app to move data to or from your desktop

■ see: https://www.globus.org/globus-connect-personal)
● To start, visit the webapp and lookup “Northern Arizona University” at the prompt

● The first time it will ask you:
○ if you want to link your account

■ say no if you’ve never
used globus before

○ to confirm your email
○ to accept terms and conditions
○ to allow globus to use your id

for file transfers
● Uses NAU SSO

https://app.globus.org
https://www.globus.org/globus-connect-personal

Globus (Part 2)

● Globus calls access points “collections”
● Search for “NAU” under “collections” to access Monsoon via globus

○ The one named “NAU HPC Filesystems” has access to /home /scratch and /projects
○ The one named “NAU Google Drive” has access to your NAU-affiliated google drive
○ You can read/write from your desktop too if you have globus personal running

● In the browser app
○ search up a collection
○ right click on a file or

directory
○ select “transfer or sync

to…”
○ now search a second

collection
○ select a destination folder

for the second collection
○ click on start to move data

to the second collection

END
Need to contact us?

● Email:
○ ask-arc@nau.edu

● Zoom Office Hours
○ Every Wednesday
○ Alternates Between 1:00PM-2:00PM and 2:00PM-3:00PM
○ https://in.nau.edu/arc/office-hours/

Questions?

mailto:ask-arc@nau.edu
https://in.nau.edu/arc/office-hours/

Section Header/Footer

ALT TITLE

