
Intro to Monsoon and Slurm
(compressed)

https://rcdata.nau.edu/hpcpub/workshops/classroom_gpu.pdf

Christopher Coffey
11/2/2020

https://rcdata.nau.edu/hpcpub/workshops/classroom_gpu.pdf

Get logged in!
• From a Mac or Linux system (happy with command line):

– Open the terminal application
– ssh your_louie_id@rain.hpc.nau.edu

Or

• Ondemand (new to or hate command line):
– https://ondemand.hpc.nau.edu
– See https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf for more info

Slides here:
https://rcdata.nau.edu/hpcpub/workshops/classroom_gpu.pdf

mailto:your_louie_id@rain.hpc.nau.edu
https://ondemand.hpc.nau.edu/
https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

List of Topics

• Cluster education
– What is a cluster, exactly?
– Queues, scheduling and resource management

• Cluster Orientation
– Monsoon cluster specifics
– How do I use this cluster?
– Exercises
– Question and answer

What is a cluster?

• A computer cluster is many individual computers systems
(nodes) networked together locally to serve as a single
resource

• Ability to solve problems on a large scale not feasible alone

What is scheduling?

• “A plan or procedure with a goal of completing some objective
within some time frame”

• Scheduling for a cluster at the basic level is much the
same. Assigning work to computers to complete objectives
within some time availability

• Not exactly that easy though. Many factors come into play
scheduling work on a cluster.

Scheduling

• A scheduler needs to know what resources are available on the
cluster

• Assignment of work on a cluster is carried out most efficiently
with scheduling and resource management working together

Resource Management

• Monitoring resource availability and health
• Allocation of resources
• Execution of resources
• Accounting of resources

Cluster Resources

• Node
• Memory
• CPU’s
• GPU’s
• Licenses

What is a queue?

• Normally thought of as a line, FIFO
• Queues on a cluster can be as basic as a FIFO, or far more

advanced with dynamic priorities taking into consideration
many factors

Many scheduling methods

• FIFO
– Simply first in first out

• Backfill
– Runs smaller jobs with lower resource requirements while larger jobs

wait for higher resource requirements to be available

• Fairshare
– Prioritizes jobs based on users recent resource consumption

Inside a Node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s job

Bill’s job Mary’s job

Monsoon

• The Monsoon cluster is a resource available to the NAU research
enterprise

• 103 systems (nodes) – cn[3-105]
• 2860 Intel Xeon cores
• 20 GPUs, NVIDIA Tesla K80, P100, and V100
• Red Hat Enterprise Linux 6.8
• 24TB memory - 128GB/node min, 1.5TB max
• 500TB high-speed scratch storage (Lustre)
• 615TB long-term storage (ZFS)
• High speed interconnect: FDR Infiniband

Slurm … yummm

• Slurm (Simple Linux Utility for Resource Management)
• Excellent resource manager and scheduler
• Precise control over resource requests
• Developed at LLNL, continued by SchedMD
• Used everywhere from small clusters to the largest clusters:
– Fugaku (#1), 7.3M cores, ARM Fujitsu, 415 PF, 28.3k kW - Japan
– Summit (#2), 2.4M cores, NVIDIA Volta GPUs, 200 PF, 9.7k kW - USA

Small Cluster!

Dual core?

Largest Cluster!

10,649,600 cores

2.4M cores

Monsoon scheduling

• Combination of scheduling methods
• Currently configured to utilize backfill along with a multifactor

priority system to prioritize jobs

Factors attributing to priority

• Fairshare (predominant factor)
– Priority points determined on users recent resource usage
– Decay half life over 1 days

• QOS (Quality of Service)
– Some QOS have higher priority than others, for instance: debug

• Age – how long has the job sat pending
• Job size - the number of nodes/cpus a job is requesting

Storage

• /home – 10GB quota
– Keep your scripts and executables here
– Snapshotted twice a day: /home/.snapshot
– Please do not write job output (logs, results) here!!

• /scratch – 500TB total space, 30 day retention
– Very fast storage, capable of 11GB/sec
– Quota: 10TB, 1M files
– Checkpoints, logs
– Keep all temp/intermediate data here
– Should be your default location to perform input/output

Data Flow

1. Keep scripts and executables in /home
2. Write temp/intermediate data to /scratch
3. Copy data to /projects/<group_project>, for group storage

and reference in other projects
4. Cleanup /scratch

** Remember, /scratch is a scratch filesystem, used for high-
speed temporary, and intermediate data

Remote storage access

• scp
– scp files nauid@rain.hpc.nau.edu:/scratch/nauid
– WinSCP (windows)
– Fetch (mac)

• samba / cifs
– \\nau.froot.nau.edu\cirrus (windows)
– smb://nau.froot.nau.edu/cirrus (mac)

mailto:nauid@monsoon.hpc.nau.edu

Modules

• Software environment management handled by the modules
package management system

• module avail – what modules are available
• module list – modules currently loaded
• module load <module name> - load a package module
• module display <module name> - detailed information

including environment variables effected

Software
• ENVI / IDL
• Matlab
• Mathematica
• Intel Compilers, and MKL
• R
• SAS
• Qiime, and Qiime2
• Anaconda Python
• Lots of bioinformatics programs
• Request additional software to be installed!

Interacting with Slurm

• What resources are needed?
– 2 cpus, 12GB memory, for 2 hours?

• What steps are required?
– Run prog1, then prog2 … etc
– Are the steps dependent on one another?

• Can your work, or project be broken up into smaller pieces?
Smaller pieces can make the workload more agile.

• How long should your job run for?
• Is your software multithreaded, using pthreads, OpenMP or MPI?

Example Job script
• #!/bin/bash
• #SBATCH --job-name=test
• #SBATCH --output=/scratch/nauid/output.txt # the stdout from your program goes here
• #SBATCH --time=20:00 # shorter time = sooner start
• #SBATCH --chdir=/scratch/nauid # default location slurm searches

• # replace this module with software required in your workload
• module load anaconda3

• # example job commands
• # each srun command is a job step, so this job will have 2 steps
• srun sleep 300
• srun python -V

Job Parameters
You want Switches needed
More than one cpu for the job --cpus-per-task=2, or -c 2

To specify an ordering of your jobs --dependency=afterok:job_id, or -d
job_id

Split up the output, and errors --output=result.txt --error=error.txt
Add MPI tasks/ranks to your job --ntasks=2, or -n 2
MPI ranks per node --ntasks-per-node
MPI ranks per socket --ntasks-per-socket
To receive status email --mail-type=ALL

Contraints and Resources
You want Switches needed
To choose a specific node feature
(e.g. avx2) --constraint=avx2

To use a generic resources (e.g. a
gpu) --gres=gpu:tesla:1

Login node vs Compute node
• When you login to “monsoon” interactively or via Ondemand you are

placed on a login node.
• The login node is a shared system used solely for:
– Developing scripts
– Transferring small data
– Submitting work to the scheduler
– Analyzing results
– Debug work less than 30 minutes in length

• The compute nodes are what make the supercomputer “super”.
• Don’t attempt to complete your homeworks >30min in length outside of

slurm. If you do, they will be auto-killed, and your professor will be
notified!

Interactive / Debug Work

• Run your compiles and testing on the cluster nodes by:

– srun –p all gcc hello.c –o a.out
– srun –qos=debug -c12 make -j12
– srun Rscript analysis.r
– srun python analysis.py

– Try this now:
• srun hostname
• hostname

Long Interactive work
• salloc

– Obtain a SLURM job allocation that you can work with for an extended amount of time. With an
allocation, srun commands are run instantly against this allocation.

[user1@wind ~]$ salloc –c 2 --time=5:00:00
salloc: Granted job allocation 33442

[user1@wind ~]$ srun python analysis.py
[user1@wind ~]$ exit
salloc: Relinquising job allocation 33442
[user1@wind ~]$ salloc -N 2
salloc: Granted job allocation 33443
[user1@wind ~]$ srun hostname
cn3.nauhpc
cn2.nauhpc
[user1@wind ~]$ exit
salloc: Relinquising job allocation 33443

Submit the script

The sbatch command is used to submit batch jobs to the slurm
workload manager. Jobs submitted with sbatch are placed in a
queue where they wait for resources to become available.

[user1@wind ~]$ sbatch jobscript.sh
Submitted batch job 85223
– slurm returns a job id for your job that you can use to monitor or

modify constraints

Monitoring your job

• squeue
– view information about jobs located in the SLURM scheduling queue.

• squeue --start
• squeue -u login
• squeue -o “%j %u … “
• squeue -p partitionname
• squeue -S sortfield
• squeue -t <state> (PD or R)

Monitoring your job

• sprio
– view the factors that comprise a job’s scheduling priority

• sprio –l
-- list priority of users jobs in pending state

• sprio -o “%j %u … “
• sprio -w

Controlling your job

• scancel
– Used to signal jobs or job steps that are under the control of Slurm.

• scancel -j jobid
• scancel -n jobname
• scancel -u mylogin
• scancel -t pending (only yours)

Controlling your job

• scontrol
– Used to view and modify Slurm configuration and state.

• scontrol show job 85224

Job Accounting

• To see job history, and job efficiency use jobstats!

– jobstats -r # see todays jobs, including running jobs
– jobstats -j <jobid> # see stats for the individual jobid
– jobstats -S 9/1/19 # see job stats for all jobs since 9/1/19

Exercise 1

Get to know monsoon and Slurm, on your own.

1. How many nodes make up monsoon?
– Hint: use “sinfo”

2. How many nodes are in the all partition?
3. How many jobs are currently in the running state ?
– Hint: use “squeue -t R”

4. How many jobs are currently in the pending state? Why?
– Hint: use “squeue –t PD”

Exercise 2
• Create a simple job in your home directory
• Example here: /common/contrib/examples/job_scripts/simplejob.sh (copy

it if you like J)
– cp /common/contrib/examples/job_scripts/simplejob.sh ~/

• Name your job: “exercise”
• Name your jobs output: “exercise.out”
• Output should go to /scratch/<user>/exercise.out
• Load the module “workshop”
• Run the “date” command
• And additionally, the “secret” command
• Submit your job with sbatch, i.e. “sbatch simplejob.sh”

Exercise 3
• Edit the jobscript from previous exercise 2
• Make your job sleep for 5 minutes (sleep 300)
– Sleep is a command that creates a lazy process that … sleeps and does nothing

• Monitor your job
– squeue -u your_nauid
– squeue -t R
– scontrol show job jobnum
– sacct -j jobnum

• Inspect the steps

• Cancel your job
– scancel jobnum

Exercise 4
• Edit the same job script from exercise 3
• Remove the srun statements
• Add a module load statement to load “cuda”

– module load cuda
• Add a statement to request one gpu

– #SBATCH -G 1
• Request a special reservation for this workshop

– #SBATCH --reservation=gpu_class # note, this is not needed outside of this workshop
• Run the v100_secret binary

– srun v100_secret
• Save the job script
• Resubmit the job script with sbatch
• Verify that the job is now scheduled to use a gpu

– scontrol show job <job id>
– squeue -u <your id>
– The job will be scheduled to run on our v100 gpu node:

• cn1
– Check the exercise.out output file for the secret code

Specifying specific GPUs
• There are three different NVIDIA GPU models currently

– k80
– p100
– v100

• To request a generic GPU
– #SBATCH -G 1

• To request a specific GPU
– #SBATCH -G 1
– #SBATCH -C <model>

• k80
• p100
• v100

– Example
• #SBATCH -G 1
• #SBATCH -C k80

Utilizing GPUs interactively

• To utilize a generic GPU interactively
– srun -G 1 a.out

• To utilize a specific GPU model interactively
– srun -G 1 -C k80 a.out

• Request a GPU allocation to use interactively for some time
– salloc -G -C k80 -t 2:00:00
– srun a.out

Exercise 5
• Copy job script and edit:

– /common/contrib/examples/job_scripts/lazyjob.sh
• Edit the job with your user id
• Submit the job, it will take 65 sec to complete
• Use sstat and monitor the job

– sstat -j <jobid>
• Review the resources that the job used

– jobstats -j <jobid>
• We are looking for “MaxRSS”, MaxRSS is the max

amount of memory used
• Edit the job script, reduce the memory being

requested in MB and resubmit, edit “--mem=“ , e.g.
--mem=600

• Review the resources that the optimized job utilized
once again
– jobstats -j <jobid>

• Ok, memory looks good, but notice that the usercpu
is the same as the elapsed time

Usercpu = num utilized cpus * elapsed time

• This is because the application we were running only
used 1 of the 4 cpus that we requested

• Edit the lazy job script, comment out first srun
command, and uncomment the second srun
command.

• Resubmit
• Rerun jobstats -j <jobid>, notice now usercpu is a

multiple times the elapsed time, in this case (4).
Because we were allocated 4 cpus, and used 4 cpus.

• Now address the egregious time estimate!

Keep these tips in mind

• Know the software you are running, is it multi-threaded?
• Request resources accurately
• Supply an accurate time limit for your job
• Don’t be lazy, it will effect you and your group negatively

Question and Answer

• More info here:
http://nau.edu/hpc

• Linux shell help here:
– http://linuxcommand.org/tlcl.php
– Free book download
– https://nau.edu/HPC/Linux-External-Resources/

• And on the nauhpc listserv
– nauhpc@lists.nau.edu

http://nau.edu/hpc
http://linuxcommand.org/tlcl.php

Slurm Arrays!

Slurm Arrays Exercise

• From your scratch directory: “/scratch/nauid”
• tar xvf /common/contrib/examples/bigdata_example.tar
• cd bigdata
• edit the file “job_array.sh” so that it works with your nau id

replacing all NAUID with yours
• Submit the script “sbatch job_array.sh”
• Run “squeue”, notice there are 5 jobs running, how did that

happen!

Hate command line?

• Ondemand
– https://ondemand.hpc.nau.edu
– For command line access, click on clusters tab, and select monsoon cluster

login shell
– See https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf (pages 35-37)

https://ondemand.hpc.nau.edu/
https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

