
Intro to Monsoon and Slurm

ENABLE ZOOM! (1 remote)

2/12/2019
Slides:

https://rcdata.nau.edu/hpcpub/workshops/intro.pdf



Get logged in!
• From a Windows pc:
– Open the putty application

• May need to search in start menu for it
– In the hostname field:

• your_louie_id@monsoon.hpc.nau.edu
– Click open button
– And accept the security key by typing ”y”

• From a Mac:
– Open the terminal application
– ssh your_id@monsoon.hpc.nau.edu

mailto:your_id@monsoon.hpc.nau.edu


Introductions

• Introduce yourself
– Name
– Department / Group
– What project(s) do you plan to use monsoon for?
– Linux or Unix experience
– Previous cluster experience?



List of Topics

• Cluster education
– What is a cluster, exactly?
– Queues, scheduling and resource management

• Cluster Orientation
– Monsoon cluster specifics
– How do I use this cluster?
– Group resource limits
– Exercises
– Question and answer



What is a queue?

• Normally thought of as a line, FIFO (Line at Starbucks)
• Queues on a cluster can be as basic as a FIFO, or far more 

advanced with dynamic priorities taking into consideration 
many factors



What is scheduling?

• “A plan or procedure with a goal of completing some objective 
within some time frame”

• Scheduling for a cluster at the basic level is much the 
same. Assigning work to computers to complete objectives 
within some time availability

• Not exactly that easy though. Many factors come into play 
scheduling work on a cluster.



Scheduling

• A scheduler needs to know what resources are available on the 
cluster in order to make accurate scheduling decisions

• Resource availability changes by the minute
• Assignment of work on a cluster is carried out most efficiently 

with the scheduler and resource manager working together



Resource Manager

• Monitoring resource availability and health
• Allocation of resources
• Execution of resources
• Accounting of resources



Our Scheduling Goals

• Optimize quantity of work
• Optimize usage of resources
• Service all users and projects justly
• Make scheduling decisions transparent



Cluster Resources

• Node
• Memory
• CPU’s
• GPU’s
• Licenses



Many scheduling methods

• FIFO
– Simply first in first out

• Backfill
– Runs smaller jobs with lower resource requirements while larger jobs 

wait for higher resource requirements to be available
• Fairshare
– Prioritizes jobs based on a users recent resource consumption



Inside a Node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s job

Bill’s job Mary’s job



Monsoon Today

• The Monsoon cluster is a resource available to the NAU research 
enterprise

• 103 systems (nodes) – cn[3-105]
• 2860 Intel Xeon cores
• 16 GPUs, NVIDIA Tesla K80, and P100
• Red Hat Enterprise Linux 6.9
• 24TB memory - 128GB/node min, 1.5TB max
• 500TB high-speed scratch storage (Lustre)
• 615TB long-term storage (ZFS)
• High speed interconnect: FDR Infiniband



Slurm … yummm

• Slurm (Simple Linux Utility for Resource Management)
• Excellent resource manager and scheduler
• Precise control over resource requests
• Developed at LLNL, continued by SchedMD
• Used everywhere from small clusters to the largest clusters:
– Summit (#1), 2.4M cores, NVIDIA Volta GPUs, 200 PF, 9.7k kW - USA
– Sierra (#2), 1.5M cores, 125 PF, 7.4k kW - USA



Small Cluster!

Dual core?



Largest Cluster!

2.4M cores



Monsoon scheduling

• Combination of scheduling methods
• Currently configured to utilize backfill along with a multifactor 

priority system to prioritize jobs



Factors attributing to priority

• Fairshare (predominant factor)

– Priority points determined on users recent resource usage

– Decay half life over 12 hours

• QOS (Quality of Service)

– Some QOS have higher priority than others, for instance: debug

• Age – how long has the job sat pending

• Job size - the number of nodes/cpus a job is requesting



Storage
• /home – 10GB quota
– Keep your scripts and executables here
– Snapshotted twice a day: /home/.snapshot
– Please do not write job output (logs, results) here!!
– Run the command “quota” now

• /scratch – 500TB, 30 day retention
– Very fast storage, capable of 11GB/sec
– Quota: 20TB, 1M files
– Checkpoints, logs
– Keep all temp/intermediate data here
– Should be your default location to perform input/output



Storage

• /projects – 615TB
– Long-term storage project shares
– 10TB is assigned to faculty member for group to share
– $24/TB/year above 10TB
– Snapshots available
– Backups available - $.10/GB/month

• /common
– Cluster support share
– Contrib: place to put software/libs/confs/db’s for others use



Data Flow

1. Keep scripts and executables in /home
2. Write logs/temp/intermediate data to /scratch
3. Copy data to /projects/<group_project>, for group storage 

and reference in other projects
4. Cleanup /scratch

** Remember, /scratch is a scratch filesystem, used for high-
speed temporary, and intermediate data



Remote storage access

• scp
– scp files nauid@monsoon.hpc.nau.edu:/scratch/nauid
– WinSCP (windows)
– Cyberduck (mac)

• samba / cifs
– \\nau.froot.nau.edu\cirrus (windows)
– smb://nau.froot.nau.edu/cirrus (mac)

• Globus
– https://nau.edu/high-performance-computing/globus/

mailto:nauid@monsoon.hpc.nau.edu
https://nau.edu/high-performance-computing/globus/


Groups

• NAU has a resource called Enterprise groups

• They are available to you on the cluster if you’d like to manage 

access to data

• https://my.nau.edu

– “Go to Enterprise Groups”

– Take a look at our FAQ :: nau.edu/hpc/faq

• If they are not working for you, contact ITS help desk

• What groups are you in? Run the command “groups”, or ”I”

http://my.nau.edu


Software
• ENVI / IDL
• Matlab
• Mathematica
• Intel Compilers, and MKL
• SAS
• R
• Qiime2
• Anaconda Python
• WRF
• Amber
• Tensorflow
• Lots of bioinformatics programs

• Full list here: “module avail”
• Request additional software to be installed!



Modules

• Software environment management handled by the modules
package management system

• module avail – what modules are available
• module list – modules currently loaded
• module load <module name> - load a package module
• module display <module name> - detailed information 

including environment variables effected



MPI

• Quick note on MPI
• Message Passing Interface for parallel computing
• Open MPI set as default MPI
• Mpich, and Mvapich2 also available
– module unload openmpi
– module load mvapich2

• Example MPI job script:
– /common/contrib/examples/job_scripts/mpijob.sh



Interacting with Slurm

• What resources are needed?
– 2 cpus, 12GB memory, for 2 hours?

• What steps are required?
– Run prog1, then prog2 … etc
– Are the steps dependent on one another?

• Can your work, or project be broken up into smaller pieces? 
Smaller pieces can make the workload more agile.

• How long should your job run for?
• Is your software multithreaded, uses OpenMP or MPI?



Example Job script

• #!/bin/bash
• #SBATCH --job-name=test
• #SBATCH --output=/scratch/nauid/output.txt # the stdout from your program goes here
• #SBATCH --time=20:00 # shorter time = sooner start
• #SBATCH --workdir=/scratch/nauid # default location slurm searches

• # replace this module with software required in your workload
• module load anaconda/latest  # loads our supported conda distribution (v2)

• # example job commands
• # each srun command is a job step, so this job will have 2 steps
• srun sleep 300
• srun python -V



Job Parameters
You want Switches needed
More than one cpu for the job --cpus-per-task=2, or -c 2

To specify an ordering of your jobs 
--dependency=afterok:job_id, or -d 
job_id

Split up the output, and errors --output=result.txt --error=error.txt

To run your job at a particular 

time/day

--begin=16:00 --begin=now+1hour --

begin=2010-01-20T12:34:00 

Add MPI tasks/ranks to your job --ntasks=2, or -n 2
To control job failure options --norequeue –requeue

To receive status email --mail-type=ALL



Contraints and Resources
You want Switches needed
To choose a specific node feature 
(e.g. avx2) --constraint=avx2

To use a generic resources (e.g. a 
gpu) --gres=gpu:tesla:1

To reserve a whole node for yourself --exclusive 
To chose a partition --partition 



Submit the script

[user1@wind ~ ]$ sbatch jobscript.sh
Submitted batch job 85223
– slurm returns a job id for your job that you can use to monitor or

modify constraints



Login node vs Compute node

• When you log into “monsoon” you are placed on a login node
• The login node is a shared system used solely for:
– Developing scripts
– Transferring data
– Submitting work to the scheduler
– Analyzing results
– Debug work less than 30 minutes in length

• The compute nodes are what make the supercomputer 
“super”.



Interactive / Debug Work
• Run your compiles and testing on the cluster nodes by:

– srun –p all gcc hello.c –o a.out
– srun –qos=debug -c12 make -j12
– srun Rscript analysis.r
– srun python analysis.py

– Try this now:
• srun hostname
• hostname



Long Interactive work
• salloc

– Obtain  a SLURM job allocation that you can work with for an extended amount of time interactively.  This is useful for testing/debugging 
for an extended amount of time.

[user1@wind ~ ]$ salloc -c 8 --time=2-00:00:00
salloc: Granted job allocation 33442

[user1@wind ~ ]$ srun python analysis.py
[user1@wind ~ ]$ exit
salloc: Relinquising job allocation 33442
[user1@wind ~ ]$ salloc -N 2
salloc: Granted job allocation 33443
[user1@wind ~ ]$ srun hostname
cn3.nauhpc
cn2.nauhpc
[user1@wind ~ ]$ exit
salloc: Relinquising job allocation 33443



Monitoring your job

• squeue
– view information about jobs located in the SLURM scheduling queue.

• squeue --start
• squeue -u login
• squeue -o “%j %u … “
• squeue -p partitionname
• squeue -S sortfield
• squeue -t <state> (PD or R)



Cluster info

• sinfo
– view information about SLURM nodes and partitions.

• sinfo -N –l
• sinfo –R
– List reasons for downed nodes and partitions



Monitoring your job

• sprio
– view the factors that comprise a job’s scheduling priority

• sprio –l 
-- list priority of users jobs in pending state

• sprio -o “%j %u … “
• sprio -w



Monitoring your job

• sstat
– Display various statistics and information of a running job

• sstat -j jobid
• sstat -o AveCPU,AveRSS

• Only works with jobs where analysis is executed with “srun”



Controlling your job

• scancel
– Used to signal jobs or job steps that are under the control of Slurm.

• scancel -j jobid
• scancel -n jobname
• scancel -u mylogin
• scancel -t pending (only yours)



Controlling your job

• scontrol
– Used to view and modify Slurm configuration and state.
– Can change job constraints while it’s in pending state, once the job 

starts, it can no longer be modified
• scontrol show job 85224 
• scontrol update jobid=6880341 timelimit=4:00:00



Job Accounting
• sacct
– displays accounting data for of your jobs and job steps in the SLURM job 

accounting log or SLURM database
• sacct -j jobid -o jobid,elapsed,maxrss
• sacct -N nodelist
• sacct -u mylogin

• Try our alias “jobstats”
– jobstats -r
– jobstats -j <jobid>



Job Accounting

• sshare
– Tool for listing the shares of associations to a cluster.

• sshare -l : view and compare your groups cpu minutes usage 
• sshare -a : view all users fairshare
• sshare –A –a <account> : view all members in your account 

(group)
• group_efficiency <account>



Account hierarchy
• Your user account belongs to a parent faculty account (group)
• Your user account shares resources that are provided for your 

group
• Example:
– account1

• user1
• user2

• View the account structure you belong to with: “sshare -a –A 
<account>”

• Example:
– sshare -a -A account1



Limits on the account (group)

• Limits are in place to prevent intentional or unintentional 
misuse of resources to ensure quick and fair turn around times 
on jobs for everyone.

• Groups are limited to a total number of cpu minutes in use at 
one time: 5M, and gpu minutes: 64K

• This cpu resource limit mechanism is referred to as: 
“TRESRunMins”. 

• This limiting mechanism has nothing to do with priority!



TRESRunMins Limit
• What the heck is that!?
• A number which limits the total number of remaining cpu minutes 

which your running jobs can occupy.
• Enables flexible resource limiting
• Staggers jobs
• Increases cluster utilization
• Leads to more accurate resource requests

• Sumofjobs(cpus * timelimit remaining)



Examples
• 14400 = 10 jobs, 1 cpu, 1 day in length
• 144000 = 10 jobs, 10 cpu, 1 day in length
• 720000 = 10 jobs, 10 cpu, 5 days in length
• 720000 = 1000 jobs, 1 cpu, ½ day in length
• 1105920 = 1 job, 1024 cpus, 18 hrs in length

Questions?

• Check your groups cpu min usage:
– sshare -l



TRES run minutes (demo)
• Say, groupA’s total cpu minute limit is: 5000 
• Example, groupA submits three jobs

– Job1:
• 1 core
• 1 day timelimit (1440 minutes)
• 1 GB memory

– Job2:
• 2 core
• 1 days (1440 minutes)
• 16 GB memory
• 2880 minutes total !

– Job 3:
• 1 core
• 1 day (1440 minutes)
• 1GB memory



TRES run minutes

– Assuming there are available monsoon resources
– How many jobs start?

– How many cpu minutes are in use?

– When is job 3 ELIGIBLE to start?



TRES run minutes
– Assuming there are available monsoon resources
– How many jobs start?

• 2
– How many cpu minutes are in use?

• 1440+2880 = 4320
– When is job 3 ELIGIBLE to start?

• After ~6 hours (6*60 = 360), and 2 jobs (360*2) = 720 minutes

• We have only 5000-4320 = 680 minutes available initially
• After ~ 1/4 day goes by (360 minutes) * 2 (two jobs) =  720 minutes
• 680 + 720 = 1400
• After another 40 minutes we’ll have 1440 at which point job starts



Helpful Linux Commands
List Files ls

options -l – to show more information
Change Directory cd <directory path>

cd by itself will return you to your home directory
Show/print current working directory pwd
Copy Files cp <source> <destination>

use a period for the destination to copy a file to your current 
directory

Move or rename a file mv <source> <destination>
Delete a file rm <filename>
Create a directory mkdir <directory name>
View contents of a file more <filename>

less <filename>
cat <filename>

Edit a file nano <filename>
Exit your terminal session (log off) exit



Exercise 1

Get to know monsoon and Slurm, on your own.

1. How many nodes make up monsoon?
– Hint: use “sinfo”

2. How many nodes are in the all partition?
3. How many jobs are currently in the running state ?
– Hint: use “squeue -t R”

4. How many jobs are currently in the pending state?  Why?
– Hint: use “squeue –t PD”



Exercise 2

• Create a simple job in your home directory
• Example here: /common/contrib/examples/job_scripts/simplejob.sh (copy 

it if you like J )
• Name your job: “exercise”
• Name your jobs output: “exercise.out”
• Output should go to /scratch/<user>/exercise.out
• Load the module “workshop”
• Run the “date” command
• And additionally, the “secret” command
• Save your job
• Submit your job with sbatch, i.e. “sbatch simplejob.sh”



Exercise 3

• Edit the jobscript file from previous exercise 2
• Make your job sleep for 5 minutes (sleep 300)
– Sleep is a command that creates a lazy process that … sleeps and does nothing

• Monitor your job
– squeue -u your_nauid
– squeue -t R
– scontrol show job jobnum
– sacct -j jobnum

• Inspect the steps

• Cancel your job
– scancel jobnum



Exercise 4 (note Slurm bug)
• Copy job script and edit:

– /common/contrib/examples/job_scripts/lazyjob.sh
• Edit the job with your user id
• Submit the job, it will take 65 sec to complete
• Use sstat and monitor the job

– sstat -j <jobid>
• Review the resources that the job used

– jobstats -j <jobid>
• We are looking for “MaxRSS”, MaxRSS is the max 

amount of memory used
• Edit the job script, reduce the memory being 

requested in MB and resubmit, edit “--mem=“ , e.g. 
--mem=600

• Review the resources that the optimized job utilized 
once again
– jobstats -j <jobid>

• Ok, memory looks good, but notice that the usercpu
is the same as the elapsed time

Usercpu = num utilized cpus * elapsed time

• This is because the application we were running only 
used 1 of the 4 cpus that we requested

• Edit the lazy job script, comment out first srun
command, and uncomment the second srun
command.  

• Resubmit
• Rerun jobstats -j <jobid>, notice now usercpu is a 

multiple times the elapsed time, in this case (4).  
Because we were allocated 4 cpus, and used 4 cpus.

• Now address the egregious time estimate!



Slurm Arrays!



Slurm Arrays Exercise

• From your scratch directory: “/scratch/nauid”
• tar xvf /common/contrib/examples/bigdata_example.tar
• cd bigdata
• edit the file “job_array.sh” so that it works with your nau id 

replacing all NAUID with yours
• Submit the script “sbatch job_array.sh”
• Run “squeue”, notice there are 5 jobs running, how did that 

happen!



MPI Example

• Refer to the MPI example here:
– /common/contrib/examples/job_scripts/mpijob.sh

• Edit it, for your work areas, then experiment:

– Change number of tasks, nodes … etc

• Also can run the example like this:
– srun --qos=debug –n4 /common/contrib/examples/mpi/hellompi



Keep these tips in mind

• Know the software you are running, is it multi-threaded?
• Request resources accurately
• Supply an accurate time limit for your job
• Don’t be lazy, it will effect you and your group negatively



Question and Answer 

• More info here:
http://nau.edu/hpc

• FREE – Linux command line book:
– http://linuxcommand.org/tlcl.php

• FREE - Intro to Linux command line video:
– https://www.lynda.com/Linux-tutorials/Welcome/435539/482226-4.html
– Info here: https://nau.edu/HPC/Linux-External-Resources/

• And on the nauhpc listserv
– nauhpc@lists.nau.edu

http://nau.edu/hpc
http://linuxcommand.org/tlcl.php
https://www.lynda.com/Linux-tutorials/Welcome/435539/482226-4.html
mailto:nauhpc@lists.nau.edu

