
Linux	command-line	for	HPC	
workshop

9/14/17

Outline

• Introductions
• What	is	Linux?

• Brief	info,	and	statistics
• The	command-line,	there's	no	GUI’s	here!
• Intro	to	the	shell
• Navigating	“the	system”
• Choose	your	editor
• Moving	data	around

• Locally
• Remotely

• In	line	scripting	foo
• Monitoring	system	processes

Introductions

• Introduce	yourself
• Name
• Department	/	Group
• Linux	or	Unix	experience

What	is	Linux?

• Linux	is	a	computer	operating	system	similar	to	windows.		It	is	an	
open-source	operating	system	where	the	defining	piece	is	the	Linux	
kernel	which	was	developed	by	Linus	Torvalds	in	1991.
• The	Linux	operating	system	is:
• Linux	kernel
• GNU	applications
• Open-source

Linux	continued

• Linux	powers	businesses,	universities,	the	internet,	and	HPC	clusters.
• Linux	powers	99%	of	the	top	500	HPC	clusters	in	the	world,	the	other	
1%	is,	a	flavor	of	Unix
• http://www.top500.org/statistics/details/osfam/1
• HPC	is	the	future	of	computing,	and	a	look	at	what	will	be	on	your	
desktop,	or	your	hand	in	10	years
• If	HPC	is	a	look	at	the	future,	and	is	powered	by	linux,	shouldn’t	you	
possess	the	necessary	skills	to	do	your	research	on	linux?

Lets	get	started

• You	are	used	to	a	GUI
• We	will	use	a	text-based	shell	in	this	workshop
• Mac	OSX	– already	has	this	satisfied	(terminal)
• Windows	– use	putty,	download	here:	http://www.putty.org/
• Linux	– already	has	this	satisfied,	of	course!

• We	use	the	shell	to	interface	with	the	operating	system
• Shell commands will be colored like this
• Information	that	will	vary	for	each	person	will	be	entered	in	<pointy
brackets>

Many	types	of	shells

• The	shell	is	how	the	user	interacts	with	the	operating	system
• The	user	types	commands	into	the	shell	which	interprets	them,	and	
sends	to	the	kernel	where	the	work	is	done
• The	standard	Linux	shell	(used	in	this	course)	is	bash,	or	“Bourne-
again”	shell	
• Other	shells
• sh Bourne	shell,	original	AT&T	Unix	shell
• tcsh “Enhanced	C	shell”

• See	what	shell	you	are	using	
• echo $SHELL

Logging	in

• You	must	first	be	on	the	NAU	network,	or	NAU	VPN
• Login	to	monsoon	with	ssh

• Mac	(with	terminal):
• ssh <nauid>@monsoon.hpc.nau.edu

• Windows	(via	Putty):
• In	the	host	name	box	insert,	<nauid>@monsoon.hpc.nau.edu
• Create	a	session	name,	hit	save
• Finally,	“open”,	or	double	click	your	session

• You	are	prompted	to	accept	a	SSH	key,	type	Y.	This	happens	only	once	per	initial	
connection
• Type	your	LOUIE	password,	there	is	no	feedback	(no	stars	or	characters	printed)
• Hit	enter

I’m	logged	in,	now	what?

• You	should	see	something	like	this:
• [cbc@wind ~]$

• You	are	now	logged	into	one	of	monsoon’s	login	nodes,	in	this	case	
“wind”
• Note	that	the	login	nodes	are	not	meant	for	processing,	they	are	
solely for:
• Editing	/	submitting	job	scripts
• Compiling	programs
• Moving	data	to/from	monsoon
• Debug	work	(short	tests	of	<=30	min)

Navigating	with	the	shell

There	is	no	mouse,	so	we	must	use	the	keyboard	keys!

• Arrow	keys	to	move	back	and	forth,	up	and	down	to	move	through	
bash	history	(previous	commands)
• TAB to	auto-complete	a	command,	file,	or	directory
• Control-c to	interrupt	any	program
• Control-z to	suspend	programs	
• Control-r to	search	bash	history
• Enter to	execute	the	command

Try	some	commands	out

• pwd - print	working	directory	(where	you	currently	sit)
• id - this	is	your	user	id,	and	the	groups	you	belong	to
• ls - list	files	in	the	current	directory,	variations	“-la”,	“-h”
• w - who’s	logged	in	today,	system	load,	and	uptime
• quota - report	your	quota
• df - list	mounted	filesystems
• date - get	the	current	date
• cal - a	handy	calendar!
• echo - print	a	message,	e.g.	echo	“hello	world”	

• Try	using	the	up	arrow	to	check	out	your	history!

More	commands

• man <command> - pull	up	the	manual	page	for	the	command
• cat <file> - print	contents	of	a	file	to	the	screen
• more <file> - page	through	files
• less <file> - less	is	more!
• file <file> - determine	the	type	of	file:	txt,	data,	exe
• mkdir <dirname> - create	a	directory	name	”dirname”
• rmdir <dirname> - remove	a	directory	named	“dirname”
• rm <filename> - remove	a	file
• cd <dirname> - change	directory	to	“dirname”
• touch <file> - create	an	empty	file,	or	update	modified	time	
stamp

Command	Options	(Flags)

• Most	commands	have	extra	options	or	“flags”
• Specify	options	with	a	dash	“-”,	and	“--”	
• Multiple	options	usually	go	directly	next	to	each	other,	order	may	not	
matter
• Examples
• ls -a (list	all	files,	including	hidden	ones)
• ls -alrt (list	all	files,	long	listing,	sort	reverse	by	time)
• top -bn1 (run	top	in	batch	mode)

Navigating	the	system

Everything	in	linux is	a	file	and	all	of	the	files	and	filesystems	are	laid	out	in	one	
huge	hierarchical	directory	structure.		Note,	this	is	a	bit	different	from	windows	
where	there	is	a	separate	directory	structure	for	each	storage	device	connected	to	
the	system.

Quick	whiteboard	demo

To	navigate	the	system	we	will	use:
• pwd – print	working	directory
• ls – list	files	in	current	directory
• cd – change	directory

• cd .. , cd ~ , cd <dir> , cd <dir/subdir>

Pathnames
• A	Path	is	similar	to	web	”breadcrumbs”
• Absolute	vs	Relative	Paths

[cbc@wind ~/linux_workshop]$	pwd
/home/cbc/linux_workshop

[cbc@wind ~/linux_workshop]$	ls
file		file2

Absolute:	cat /home/cbc/linux_workshop/file
hello	world!

Relative:	cat file
hello	world!

Same	result	in	this	case,	using	relative	is	a	shorthand,	but	it	can	cause	problems	because	it’s	
ambiguous.

*	Note	that	Linux	filesystems	are	CASE	SENSITIVE	in	regards	to	files,	which	includes	directories!!
*	Also,	not	recommended	to	have	spaces	in	filenames	and	directory	names!	It	can	be	a	pain

List	the	files	in	your	directory

[cbc@wind ~/linux_workshop]$	ls
hello

[cbc@wind ~/linux_workshop]$	ls –l
total 4
-rw-r--r-- 1 billy ITS-HPC-coffey 8 Sep 22 13:56 hello

[cbc@wind ~/linux_workshop]$ ls –la
total 48
drwx------ 2 billy root 4096 Sep 22 13:56 .
drwxr-xr-x 234 root root 8192 Sep 16 13:06 ..
-rw-r--r-- 1 billy cluster 213 Jul 11 2014 .bashrc
-rw-r--r-- 1 billy ITS-HPC-coffey 8 Sep 22 13:56 hello

Listing	files

Note	the	funny	looking	files	there:
drwx------ 2 billy root 4096 Sep 22 13:56 .
drwxr-xr-x 234 root root 8192 Sep 16 13:06 ..
-rw-r--r-- 1 billy cluster 213 Jul 11 2014 .bashrc

File	names	that	begin	with	a	“.”	are	hidden.
• “.”	is	the	current	directory
• “..”	is	the	parent	directory
• .bashrc is	a	hidden	bash	configuration	file

Lab	1	– directory	structure

• Print	your	working	directory,	where	you	are	currently	(pwd)
• List	the	contents	of	the	directory	you	are	in	(ls)
• Create	a	directory	in	your	home	directory	named	“linux”	(mkdir)
• Change	directory	to	the	new	directory	“linux”	(cd)
• Create	a	directory	named	“is”	inside	of	the	linux directory	(mkdir)
• Change	directory	to	the	“is”	directory	(cd)
• Create	a	file	in	the	”is”	directory	named	“awesome”	(touch)
• Change	directory	back	to	your	home	(cd	~)
• Do	a	recursive	listing	on	the	“linux”	directory:	ls –lR linux

Lab	1	- Solution

[cbc@wind ~]$ ls -lR linux
linux:
total 0
drwxr-xr-x 2 cbc clusteradm 28 Sep 21 14:20 is

linux/is:
total 0
-rw-r--r-- 1 cbc clusteradm 0 Sep 21 14:20 awesome

File	permissions
drwxr-xr-x 2	 cbc clusteradm 28	 Sep	21	14:20	 is
1 2 3 4 5 6 7

1.	The	mode	and	type	of	the	file,	in	this	case	a	directory	(d),	mode	755
• From	left	to	right:	Type,	User,	Group,	Other
• Type	is	directory	(d) à could	also	be	– (file),	l	(link),	and	others
• User has	read	(r),	write	(w),	and	execute	(x)	 à r	(4)	+	w	(2)	+	x	(1)	=	7
• Group has	read	(r)	and	execute	(x)	 à r	(4)	+	x	(1)	=	5
• Other has	read	(r)	and	execute	(x) à r	(4)	+	x	(1)	=	5

2.	Number	of	hardlinks (you	can	kinda forget	about	this)
3.	The	owner
4.	The	group
5.	Size	of	the	file	in	bytes
6.	The	date,	of	last	modified
7.	The	name	of	the	file	or	directory

Changing	file	permissions

• Default	permissions	for	files	and	directories:
• File:	rw- for	owner,	r-- for	group,	and	r-- for	others
• Directory:	rwx for	owner,	r-x	for	group,	and	r-x	for	others

• Change	owner
• chown bob file

• Change	group
• chgrp ninjas file

• Change	mode	(permissions)
• chmod g+rw file – add	read	and	write	for	group
• chmod +x file – add	execute	to	a	file,	for	user,group,other

Managing	files

• cp file new - copy	a	file	to	“new”	file,	or	“new”	directory
• cp –f file new - force	copy	a	file
• mv file file2 - move	a	file	to	a	directory	“file2”	or	rename	file
• touch file - create	empty	file,	or	update	time	stamp	
• rm file - remove	file
• rm -f file - force	removal	of	file
• rm -r dir - recursively	remove	a	directory	
• rm –rf dir - force	remove	recursively	(CAUTION!!!!)
• rmdir dir - remove	directory
• mkdir dir - make	directory

Editors

• We	need	a	text	editor	to	edit,	and	create	text	files
• Lots	of	editors:
• Nano	 - simple	to	use
• Emacs - powerful
• Vi - powerful

• Start	out	using	nano,	then	change	it	up	and	use	a	better	editor	later.

Lab	2	– Editing/moving	files

• Change	directory	to	the	linux/is	directory	(cd)
• Rename	the	file	“awesome”	to	be	“best”	(mv)
• Make	a	directory	in	the	“is”	directory	named	“the”	(mkdir)
• Move	the	“best”	file	to	the	“the”	directory	(mv)
• Edit	the	“best”	file,	with	contents	“of	course!”	(nano, emacs, vi)
• Copy	the	“best”	file	to	the	“is”	directory,	naming	it	“fun”	(cp)
• Find	out	what	type	of	file	”fun”	is	(file)
• Print	the	contents	of	the	“fun”	file	(cat)
• *EXTRA*	Create	a	file	called	”a_secret”	within	the	“is”	directory	with	
contents,	“Professor	plum,	with	the	lead	pipe”.		This	file	should	only	be	
readable	by	you!	(hint	…	chmod)
• *BONUS*	Make	the	file	hidden

Lab	2	– Editing/moving	files	Solutions
This	is	how	it	should	look!

[tct49@wind ~]$ cd linux/is
[tct49@wind ~/linux/is]$ mv awesome best
[tct49@wind ~/linux/is]$ mkdir the
[tct49@wind ~/linux/is]$ mv best the
[tct49@wind ~/linux/is]$ cd the
[tct49@wind ~/linux/is/the]$ nano best
[tct49@wind ~/linux/is/the]$ cd ..
[tct49@wind ~/linux/is]$ cp best fun
[tct49@wind ~/linux/is]$ file fun
fun: ASCII text
[tct49@wind ~/linux/is]$ cat fun
of course

Archiving,	compression,	and	disk	usage

• In	windows,	and	mac	you’ve	worked	with	archives	before.		Maybe	
they	were	zip	files,	or	possibly	tar	files.		Tar	(tape	archive)	files	are	
similar	to	zip	files.		They	are	an	archive	file	that	holds	many	files.		
Making	transport	of	many	files	easy.
• Normally	in	linux,	datasets	and	source	file	bundles	are	packaged	in	tar	
files	and	compressed	a	number	of	ways.		You	may	also	still	see	zip	
files	from	time	to	time.
• Tar	files	are	compressed	most	often	times	with:
• gzip
• bzip2

Archiving,	compression,	and	disk	usage

• Archives	may	take	the	form	of:
• data.tar - uncompressed	tar	file
• data.tar.gz - tar	file	compressed	with	gzip
• data.tgz - same,	but	different	extension
• data.tar.bz2 - tar	file	compressed	with	bzip2
• data.zip - zip	file

• Can	always	check	with	the	handy	“file”	command:
file R-3.1.0.tar.gz
R-3.1.0.tar.gz:	gzip compressed data,	from Unix,	last modified:	Thu Apr
10	00:10:53	2014

Archiving,	compression,	and	disk	usage

tar cvf file.tar directory - create	archive	of	the	directory	“directory”		
tar xvf file.tar - expand	the	file.tar archive	into	current	dir
tar tvf file.tar - view	the	contents	without	extracting
tar xvzf file.tar.gz - expand	a	compressed	archive
tar tvzf file.tar.gz - view	the	contents	of	a	compressed	archive
gzip file.tar - compress	a	tar	file	with	gzip
gunzip file.tar.gz - uncompress a	tar	file	with	gunzip
bzip2 file.tar - compress	a	tar	file	with	bzip2
bunzip2 file.tar.bz - uncompress a	tar	file	with	bunzip2
du file - show	the	disk	usage	of	a	file,	or	directory
du -h file - in	human	readable	format
du –sh dir - like	above,	but	the	sum	of	all	files	in	a	dir
ls -h - list	sizes	of	files	in	human	readable	format

Lab	3	– File	Compression	and	disk	usage

• Cd	~
• Create	a	tar	archive	named	linux.tar of	your	“linux”	directory,	and	store	the	
archive	in	the	root	of	your	home	directory	(tar)
• Run	the	file	command	on	your	new	archive	(file)
• How	much	space	is	taken	up	by	this	archive?	(du)
• Compress	your	archive	file	with	gzip (gzip)
• How	much	space	is	taken	up	by	the	compressed	archive?	(du)
• Run	the	file	command	on	your	new	compressed	archive	(file)
• While	in	the	root	of	your	home	directory,	expand	the	archive:

• /common/contrib/workshops/linux/linux_data.tar.gz (tar, gunzip)
• Inspect	the	contents	(ls)
• Find	out	how	much	space	is	taken	up	by	the	linux_data directory	(du)

Wildcards

• While	in	the	shell,	you	can	select	files/directories	based	on	wildcards	
on	standard	regex
• [0-9] - select	elements	with	numbers
• [a-z] - selects	elements	with	letters
• ^ - selects	everything	but,	e.g.	[^0-9]	(not	numbers)
• ? - matches	any	1	character	
• * - 0	or	more

Wildcard	Examples

• While	in	the	shell,	you	can	select	files/directories	based	on	wildcards	
on	standard	regex	(regular	expression)
• ls *.txt - lists	all	files/folders	that	end	in	“.txt”
• ls lin* - lists	all	files/folders	that	start	with	“lin”
• ls *[0-9]* - lists	all	files/folders	that	have	a	number	in	them
• ls [a-z]* - lists	all	files/folders	that	begin	with	a	letter
• ls [^a-z]* - lists	all	files/folders	that	don’t	begin	with	a	letter
• ls ??[0-9]* - lists	all	files/folders	that	have	a	number	at	the	3rd
position

Lab	4	– Wildcards

• Switch	to	the	/common/contrib/tutorials/sc15 directory
• List	all	the	files	that	end	with	“.pdf”
• List	all	the	files	that	have	the	exact	string	“ADIOS”	in	them

Lab	4	– Wildcards	Solutions
[mkg52@wind ~]$ cd /common/contrib/tutorials/sc15
[mkg52@wind /common/contrib/tutorials/sc15]$ ls *.pdf
tut106s3--Catalyst.pdf tut143s3--Debugging.pdf
tut111s3--MCDRAM.pdf tut145s3--LiveProgramming.pdf
tut112s3--PracticalFaultTolerance.pdf tut148s3--ADIOS.pdf
tut115s3--Debugging.pdf tut150s3--AVX-512.pdf
tut116s3--AdvancedOpenMP.pdf tut157s3--NodeLevelPerfEng.pdf
tut120s3--Parallel-IO.pdf tut162s3--RADICAL.pdf
tut124s3--PortableHeterogeneousPrograms.pdf tut167s3--Performance101.pdf
tut126s3--VisIt.pdf tut168s3--InfiniBand-HighSpeedEthernet-for-Dummies.pdf
tut130s3--FaultToleranceTheoryAndPractice.pdf tut170s3--OpenFabrics.pdf
tut134s3--AutotuningWithPeriscope.pdf tut171s3--BigDataOnClusters.pdf
tut137s3--MPI-plus-X.pdf tut173s3--PowerAwareHPC.pdf
[mkg52@wind /common/contrib/tutorials/sc15]$ ls *ADIOS*
tut148s3--ADIOS.pdf
[mkg52@wind /common/contrib/tutorials/sc15]$ cd /common/contrib/databases/genbank/
[mkg52@wind /common/contrib/databases/genbank]$ ls ???[^0-9]*
chrontab.txt human_hits.txt mouse_hits.txt my_update_blastdb.pl nr.pal nt.gz nt.gz.md5 nt.nal

Redirecting	Input	and	Output

• System	Defaults
• stdin – Standard	Input	(File	Descriptor	of	0)
• stdout – Standard	Output	(File	Descriptor	of	1)
• stderr – Standard	Error	(File	Descriptor	of	2)

• > Redirects	output	to	another	file,	overwriting	if	it	exists
• >> Appends	to	a	file
• 2>&1	 Redirects	error	messages	to	standard	output
• &> Redirects	stdout,	and	stderr to	a	file
• |		 (vertical	bar)	Redirects	or	“pipes”	output	from	one	
program	to	another’s	input	(more	on	this	later)

Redirection	Examples

• ls > out.txt - sends	output	from	ls	to	“out.txt”	file,	
ls >> out.txt - appends	output	from	ls	to	“out.txt”	
ls foo 2> error.txt - sends	only	errors	to	”error.txt”
• ls foo &> out.txt - writes	output	and	errors	to	out.txt
• ls	|	wc –l - send	output	from	ls	to	the	wc
(wordcount)	program	and	counts	lines

Processes

• top – Real-time	view	all	running	processes,	akin	to	task	manager	in	
windows	(for	color,	try htop)
• kill <process id> - Terminates	a	running	process	(if	you	are	the	
owner	of	the	process)	
• ps - Shows	current	processes
• ctrl-z – sends	a	process	to	the	background
• ctrl-c – ends	a	running	process	in	the	foreground
• bg – lists	processes	running	in	the	background
• fg – brings	background	processes	to	the	front

Guided	Exercise	– Processes	Part	1

• Lets	create	a	process.	Run	the	command	sleep 500.	This	will	cause	your	
cursor	to	disappear	until	the	process	is	finished.
• Press	ctrl-z to	put	the	sleep	process	in	the	background,	allowing	you	to	
regain	control	of	your	terminal.
• Type	jobs.	You	should	see	your	sleep	program	listed	as	a	current	
background	process	in	the	stopped	state.
• Type	bg,	your	process	will	then	begin	running	in	the	background
• Type jobs.	You	should	see	your	sleep	program	listed	as	a	current	
background	process	in	the	running	state.
• Type	fg.	Your	sleep	process	will	now	regain	control	of	your	terminal.	Press	
ctrl-c to	end	the	current	process.
• Press	Ctrl-z	and bg to	return	your	process	to	the	background.

Guided	Exercise	– Processes	Part	2

• Run	the	top program	to	view	all	processes	currently	running.	
Alternatively,	you	can	run	ps for	a	one-time	snapshot,	and top	–u	
<userid>.
• Look	for	your	sleep	process	in	the	list.	Specifically,	look	at	the	first	column	
labelled	“PID”.	This	means	“process	id”.	Take	note	of	your	sleep	process’s	
PID.
• Press	q to	quit	top	and	get	back	to	the	terminal.	
• Type kill <PID>	where	PID	is	your	sleep	process	PID.	This	will	end	the	
sleep	process.
• Press	jobs again	to	view	background	processes.	There	should	be	none.

Lab	5	– Editing	files,	guided

• cd ~/linux
• nano grepfile

Hello	world!	 (press	Enter	to	go	to	next	line)
The	world	is	a	big	place. (press	Enter)

Save	the	file	with	cntrl-x	,	and	yes

• nano commafile
apples,oranges,oh,my

Lets	do	some	simple	data	mining

• grep
• Use	grep	to	search	a	file	and	return	all	instances	of	a	string	of	text

• grep world grepfile
• Notice,	each	line	that	has	world,	is	returned,	versus	…

• grep place grepfile

• Use	grep	recursively	to	look	for	instances	of	a	word	in	nested	directories	and	files
• From	our	“linux”	directory,	we	can	find	all	instances	of	the	word	“course”	we	
wrote	earlier…
[mkg52@wind ~/linux]$ grep -r course *
is/the/best:of course!
is/fun:of course!

More	data	mining

• Remember	the	|	symbol	(pipe)?
• We	can	redirect	the	output	of	one	command	to	the	input	of	another

• Let’s	add	a	few	lines	to	our	grepfile so	it	looks	like	this:
Hello world!
The world is a big place
test 1
test 2
testing 3

• We	can	grep	for	test,	and	pipe	the	output	to	grep	for	the	character	“2”
[cbc@wind ~/linux]$	grep	test	grepfile
test	1
test	2
testing	3
[cbc@wind ~/linux]$	grep	test	grepfile |grep	2
test	2

More	data	mining

• With	grep	you	can	invert	your	selection	as	well

[cbc@wind	~/linux]$	grep	world	grepfile
Hello	world!	
The	world	is	a	big	place	

• Vs

[cbc@wind	~/linux]$	grep	-v	big	grepfile
Hello	world!

Let’s	take	a	look	at	what	happened… demo

Lab	6	– Pipes	and	Processes

• Start	a	new	process	by	running	sleep	for	500	seconds	(sleep)
• Put	the	process	in	the	background	(ctrl-z)
• Find	the	PID	of	your	sleep	process	using	ps and	grep
• Kill	your	sleep	process	(kill)
• Verify	your	process	is	gone	by	running	your	previous	ps and	grep
command
• Do	a	long	recursive	listing	of	your	linux directory,	filter	the	results	so	only	
filenames	with	the	word	“best”	are	returned,	and	send	the	output	to	a	file	
called	results.txt	(ls, grep, >)
• List	the	contents	of	“results.txt”	to	verify	the	results	(cat)
• Remove	the	file	“results.txt”	(rm)

Lab	6	– Pipes	and	Processes	Solutions

mkg@ucc759:~/linux$ sleep 500
^Z
[1]+ Stopped sleep 500
mkg@ucc759:~/linux$ ps |grep sleep

46396	pts/0 00:00:00	sleep
mkg@ucc759:~/linux$ kill 49396
[1]+ Terminated: 15 sleep 500
mkg@ucc759:~/linux$ ps |grep sleep
mkg@ucc759:~/linux$ ls -alR | grep best > results.txt
mkg@ucc759:~/linux$ cat results.txt
-rw-r--r-- 1 mkg staff 11B Oct 22 11:45 best
mkg@ucc759:~/linux$ rm results.txt

Variables

• Linux	makes	use	of	variables	in	almost	every	program
• env command	lists	all	current	variables	defined	in	your	environment
• Set	your	own	variables	with	the	set command
• Set	your	own	variables	for	sub	processes	opened	from	your	shell	with	
the	export command
• Remove	variables	with	the	unset command
• Use	existing	variables	by	prepending	them	with	$
• Standard	is	to	use	all	CAPS for	constants	and	exported	variables
• echo command	can	display	variable	contents

Variables	- Example

mkg@ucc759:~/linux$ MYVAR="this is my variable"
mkg@ucc759:~/linux$ echo $MYVAR
this is my variable
mkg@ucc759:~/linux$ unset MYVAR
mkg@ucc759:~/linux$ echo $MYVAR

mkg@ucc759:~/linux$

Controlling	Your	Environment

• ~/.bashrc file	controls	your	bash	environment	settings
• Note	that	due	to	the	dot	at	the	beginning,	this	is	a	hidden	file
• Contents	of	the	file	get	run	each	time	you	start	a	terminal	session
• NOTE:	This	means	that	edits	to	the	file	will	not	go	into	effect	until	you	“source”	the	
script	or	log	off	and	then	log	back	in

• Allows	you	to	set	persistent	variables	for	every	session
• export MYVAR=10

• Allows	you	to	create	short	custom	names	or	“aliases”	for	complex	or	long	
commands
• alias sq=“squeue”

• Now	when	you	type	sq,	you	will	get	the	same	results	as	typing	squeue

• alias sj=“scontrol show job”

Command	substitution

• It	is	possible	to	imbed	command	results	within	a	command

• file	`which	cat`
[cbc@wind ~/linux]$	file	`which	cat`
/bin/cat:	ELF	64-bit	LSB	executable,	x86-64,	version	1	(SYSV)	…

• ldd $(which	cat)
[cbc@wind ~/linux]$	ldd $(which	cat)
linux-vdso.so.1	=> (0x00007fff6d5d4000)
libc.so.6	=>	/lib64/libc.so.6	(0x0000003c20000000)
/lib64/ld-linux-x86-64.so.2	(0x0000003c1f800000)

Loops

• Need	to	perform	an	action(s)	over	a	list	of	items?	Use	a	loop!
• Perform	action	over	many	items

[cbc@wind ~]$	for i in red blue green; do echo $i is a color; done
red	is	a	color
blue	is	a	color
green	is	a	color

• Displaying	consecutive	numbers
[cbc@wind ~/linux]$	for i in {1..3}; do echo $i; done (also	for	a	range:	`seq 1	3`)	
1
2
3

• Create	ranges	of	letters	or	numbers	using	curly	braces
• {a..z}	– loops	over	all	LOWERCASE	letters	of	the	alphabet
• {1..10}	– loops	over	the	numbers	1	through	10

• Use	a	custom	variable,	e.g.	i and	reference	it	with	the	$ sign,	just	like	any	other	variable

Loops	Continued
[cbc@wind /common/contrib/databases/genbank]$	for i in `ls nr.44.p*`; do du -h
$i ;done
31M	nr.44.phd
712K	nr.44.phi
647M	nr.44.phr
14M	nr.44.pin
37M	nr.44.pnd
148K	nr.44.pni
6.9M	nr.44.pog
14M	nr.44.ppd
56K	nr.44.ppi
169M	nr.44.psd
3.9M	nr.44.psi
650M	nr.44.psq

Loops	Continued

[cbc@wind ~]$ for i in `cat gems`; do echo $i ;done

for	i	in	`ls *.seq`;	do	gzip $i;	du	–h	$i;done

while true	;	do	sleep 30;	squeue -u	uid;	done	

for	i	in	`seq 1	40`;	do	analysis.sh file_$i ;	echo "done	with file_$i" |	mailx –s	"file_$i done"
a@b.com;	done	&&	echo "done	with	all	processing” |	mail	-s	“all	done”	a@b.com

echo "The	following user id’s are logged in	today:	"	&&	echo "userid idle"	&&	w	|	awk '{print $1	
"\t"	$5}'	|grep	-v	USER|grep ^[^0-9]	|sort	-u	-k1,1

Loops	Continued

• While	loops	run	until	a	condition	is	no	longer	true
• Good	for	running	commands	on	a	time	interval
• Example:	Do	a	long	listing	of	your	directory	every	second	indefinitely

mkg@ucc759:~/linux$ while true; do ls -al; sleep 1; done
total 16
drwxr-xr-x 6 mkg staff 204B Oct 27 15:48 ./
drwxr-xr-x+ 34 mkg staff 1.1K Oct 22 12:22 ../
-rw-r--r-- 1 mkg staff 24B Oct 22 11:45 commafile
-rw-r--r-- 1 mkg staff 62B Oct 22 11:53 grepfile
drwxr-xr-x 5 mkg staff 170B Oct 22 11:45 is/
drwxr-xr-x 12 mkg staff 408B Oct 22 11:45 regex/

• Use	Ctrl-C to	end	the	process

Lab	7	– Variables	and	Loops

• Make	a	variable	called	GREETING	that	stores	the	string	“Hello	there”	
(export)
• Print	your	GREETING	variable	to	the	screen	(echo, $)
• Create	an	alias	called	”greet”	that	prints	your	GREETING	variable	to	
the	screen	(alias)
• What	happens	when	you	type	greet	at	the	command	line?
• Write	a	for	loop	that	calls	your	new	greet	alias	5	times	(for, {},
greet)
• Write	a	while	loop	that	indefinitely	calls	your	greet	alias	and	sleeps	
for	2	seconds	(while, greet, sleep)

Lab	7	– Variables	and	Loops	Solutions
mkg@ucc759:~/linux$ export GREETING="Hello there"
mkg@ucc759:~/linux$ echo $GREETING
Hello there
mkg@ucc759:~/linux$ alias greet="echo $GREETING"
mkg@ucc759:~/linux$ greet
Hello there
mkg@ucc759:~/linux$ for i in {1..5}; do greet; done
Hello there
Hello there
Hello there
Hello there
Hello there
mkg@ucc759:~/linux$ while true; do greet; sleep 2; done
Hello there
Hello there
Hello there
^C
mkg@ucc759:~/linux$

Links

• One	thing	you’re	sure	to	see	and	need	at	some	point	are	links
• There	are	two	types	of	links:	soft,	and	hard
• We	will	focus	on	soft	links	for	now,	just	know	there	are	hard	links	too

Hard	links
[cbc@wind ~/linux]$ ls -li

total 0

12886566884 -rw-r--r-- 2 cbc clusteradm 0 Sep 22 10:14 file

58536428 drwxr-xr-x 3 cbc clusteradm 38 Sep 21 15:58 is

12886566884 -rw-r--r-- 2 cbc clusteradm 0 Sep 22 10:14 link

• Adding	a	string	of	text	to	the	file	shows	you	that	both	file	sizes	update
• Also	notice	that	the	inode is	the	same	for	both	files

[cbc@wind ~/linux]$ ls -li

total 8

12886566884 -rw-r--r-- 2 cbc clusteradm 13 Sep 22 10:23 file

58536428 drwxr-xr-x 3 cbc clusteradm 38 Sep 21 15:58 is

12886566884 -rw-r--r-- 2 cbc clusteradm 13 Sep 22 10:23 link

Soft	links

• Soft	links	aka	symbolic	links	are	the	most	common	type	of	links	that	you	
will	use
• ln -s file symlink
• A	soft	link	is	a	pointer	to	the	file	entry	(not	the	data)	in	the	filesystem

[cbc@wind ~/linux]$ ls -li
total 8
-rw-r--r-- 2 cbc clusteradm 13 Sep 22 10:23 file
drwxr-xr-x 3 cbc clusteradm 38 Sep 21 15:58 is
lrwxrwxrwx 1 cbc clusteradm 4 Sep 22 10:15 symlink -> file

• Notice	the	inode is	unique,	and	the	size	of	the	file	is	different.	The	size	of	
the	file	is	4KB,	the	smallest	size	of	file.

Simple	Text	manipulation	

• sed is	a	command	that	allows	you	to	perform	manipulations	to	text	
without	the	need	of	a	text	editor	and	the	patience	to	tediously	do	the	edits	
yourself.
• To	perform	a	text	substitution:

• sed ‘s/oranges/apples/’ commafile (changes go to stdout)
• sed –i ‘s/oranges/apples/’ commafile (in place)
• sed ‘s/oranges/apples/’ commafile > output.txt (redirect to
new file)

• Notice	that	it	replaced	all	instances	of	oranges	with	apples!
• Additionally,	sed can	take	a	stream	of	files	as	input	and	perform	the	same	
operations	over	all	the	files	-- yet	another	advantage	over	your	standard	
text	editor.
• sed ‘s/oranges/apples’ commafile1 commafile2 commafile3

Simple	Text	formatting

• awk is	a	command	that	allows	you	to	filter/manipulate	a	stream	of	
text.	Great	at	manipulating	rows	and	columns	of	data
• grab	two	columns	from	a	stream	of	text

[cbc@wind ~/linux]$	echo	"image1	has	value	of	.069"	|	awk '{print	$1	"	"	$5}'
image1	.069

• Grab	columns	from	a	comma	delimited	stream	
[cbc@wind ~/linux]$	echo	"image1,.069,str,1.78,k"	|	awk -F","	'{print	$1	"	"	$4}'
image1	1.78

Lab	8	- Text	Manipulation	Exercise

• Change	directory	to	linux (cd)
• In	the	file:	grepfile,	replace	the	word	“big”,	with	“gigantic”	(sed)	
• In	the	file:	grepfile,	replace	all	instances	of	“world”,	with	“space”	(sed)
• The	commafile file	has	data	that	is	comma	delimited.	Extract	the	data	and	
produce	a	text	file	named	results	that	has	the	data	separated	by	space,	or	
tabs.	(awk,	>)
• EXTRA:	Use	keywords	“Buchnera,	China”	and	search	this	file:	
/common/contrib/workshops/linux/assembly_summary.txt,	extracting	the	
1st,	2nd,	and	3rd	fields	and	redirecting	the	output	to	buchnera_china.	In	that	
file,	Change	SAMN	to	be	“NASM”	instead.	(grep,	awk,	>,	sed)

Lab	8	Solutions

• sed -i ‘s/big/gigantic’	grepfile
• sed -i ‘s/world/space’	grepfile
• awk -F,	'{print	$1	"	"	$2	"	"	$3}'	commafile >	results
• grep	Buchnera assembly_summary.txt|grep China	|awk '{print	$1	"	"	
$2	"	"	$3}'	>	~/linux/buchnera_china
• sed -i 's/SAMN/NASM/'	~/linux/buchnera_china

Questions?

• Lots	more	to	Linux
• Try	this	book	out	for	more:
• http://linuxcommand.org/tlcl.php

