> Linux command-line
for HPC

10/3/2024
presented by Jason Buechler

Slides > https://rcdata.nau.edu/hpcpub/workshops/linux.pdf

NORTHERN ARIZONA N UNIVERSITY

Outline

 What is Linux? (3 slides)

e [et’s get started: The command-line (3 slides)

* Intro to the shell (4 slides)

* Navigating the file-system (10 slides + 1 demo + 1 exercise)
 Managing files (3 slides + 1 demo + 1 exercise)

* Dealing with text (4 slides + 1 exercise)

* Dealing with processes (2 slides + 1 demo + 1 exercise)
e Advanced stuff (6 slides)

NORTHERN ARIZONA UNIVERSITY

Introductions

* Introduce yourself
* Name
e Department / Group
* Linux or Unix experience

NORTHERN ARIZONA N UNIVERSITY

What is Linux?

* Linux is a computer operating system like Mac OS or Windows
e Keep in mind: an operating system is (much) more than the user-interface

* It is an open-source operating system where the defining piece is the
Linux kernel which was developed by Linus Torvalds in 1991

e Linus + UNIX = Linux

* The Linux operating system is:
* Linux kernel, and
* Open-source, and
* More open-source software

Unix architecture layers

Contains application
programs

Hardware

Engine/
Drivetrain/
WHIEES

Core of Unix Operating System

Application interface between Software
& Hardware

i Controls execution of processes

Interface between user & kernel

Interprets all commands to kernel &

process all the response back from Kernel

.. Bourne Shel, ¢ Shell, Korn Shel, Bash NORTHERN ARIZONA @@ UNIVERSITY

Linux continued

* Linux powers businesses, universities, the internet, and HPC clusters.
* Linux powers 100% of the top 500 HPC clusters in the world
e http://www.top500.org/statistics/details/osfam/1

* HPC is the future of computing
* A hint of what will be on your desktop, or your hand, in 10 years

* HPC is built on linux, so futureproof your skills by learning linux skills
early!

NORTHERN ARIZONA N UNIVERSITY

http://www.top500.org/statistics/details/osfam/1

Let’s get started: The command-line

* Most user applications use a GUI, but this workshop uses a text-
based “shell” to interface with the operating system
. (i.e. what you type) will be colored like this
* <pointy brackets> indicate values that will vary by person/choice

* Your computer’s front-end interface “app”
* Mac OS — Use Terminal (Applications > Utilities > Terminal)
* Windows — Use Powershell (or Putty if you prefer)
* More info: https://in.nau.edu/arc/overview/connecting-to-monsoon

&

https://in.nau.edu/arc/overview/connecting-to-monsoon

Logging In

* You must first be on the NAU network, or NAU VPN
* Open Terminal (on Mac) or Powershell (on Windows)

 Use the ssh command to connect to Monsoon PS e o\ 55405 seh billywind. hoc.na

e ssh <NAUID>@monsoon.hpc.nau.edu
e Classroom students: replace monsoon with rain

® ~ — billy@wind:~ — ssh |

e You'll be prompted to accept a SSH key, type Y. i T P

$ ssh jtb49@wind.hpc.nau.edu
The authenticity of host 'wind.hpc.nau.

° Type your LOUIE password & hlt Enter ED25519 key fingerprint is SHA256:jJKt5

, . This key is not known by any other name
* NOTE: no *’s or characters are printed!
(no visual feedback for passwords)

[Are you sure you want to continue conne

NORTHERN ARIZONA N UNIVERSITY

’'m logged in, now what?

* You should see a “prompt” like this: ® ~ — billy@wind:-
[<NAUID>@wind ~]$ [billy@wind ~ 1$

* You are now “on” one of Monsoon’s login
nodes, in this case “wind”

* or raln, for classroom students

* Note that the login nodes are not meant for
heavy processing, they are solely for:
 Editing / submitting job scripts
* Moving data to/from monsoon
 Trivial debug work (short tests of <=30 min)

NORTHERN ARIZONA N UNIVERSITY

Intro to the shell

* The shell is how you interact with Linux

* It’s just a program (analogous to Finder/explorer.exe)
* A user types commands “into” the shell

* The shell sends them to the kernel, where the work is
done

* Result: text is printed to the screen and/or to a file
* The Linux shell used in this course is called “bash”
* One can see what shell they’re in/using

~ — billy@wind:~ —s

[billy@wind ~ 1$ pwd
/home/billy
[billy@wind ~ 1%

B billy@wind:~ X
[billy@wind ~]$ pwd
/home/billy

[billy@wind ~]$ |

Interacting with the shell

There is no mouse, so we must use the keyboard keys!

* Arrow keys

e left/right: moves cursor across text when entering commands

* up/down: iterate through previous shell commands
* TAB to complete typing (one) matching filename, directory, or cmnd
* TAB-TAB to show multiple matching expansions

* control-c to interrupt any program

NORTHERN ARIZONA N UNIVERSITY

Try some commands out

* pwd - print working directory (where you currently sit)
e id - this is your user id, and the groups you belong to
e 1s - list files in the current directory, (try “Is -1” too)

° W - who’s logged in today, system load, and uptime

* getquotas - report your quota

* date - get the current date and time

* echo - print a message, e.g. echo “hello world”

* Try a few (now!), then use the up arrow to check out your history!

NORTHERN ARIZONA N UNIVERSITY

About options (flags)

* Most linux commands accept extra options or “flags”
 1s -a (list all files, including hidden ones)
 1s -1 (listfiles, as a table with lots of details)
 1s -t (list files, and sort by modification time)

 Combine options one after another
* Order usually does not matter
e ls -a -1 == 1s -1 -a (listall files, with details)

* Flags are usually specified after a dash “-”, or double-dash “--”
 Single-dash flags can often be combined
 1s -alt (list all files, long listing, sort by time)

NORTHERN ARIZONA N UNIVERSITY

Navigating the file-system

In Windows and Mac OS, the GUI has informative windows
* displays what folder you’re looking in
 offers controls to change how the contents are displayed
* double-clicking a folder views that different folder

To navigate the system via our shell, we will use:
— print working directory (compare with the prompt!)
— list files in current/a directory

— change directory

&

Demonstration: Navigating the filesystem

To navigate the system we will use:
— print working directory (compare with the prompt!)
— list files

J J J J

— change directory

J J J J

List files using extra options

[nauid@wind ~/linux_workshop 1%
hello.txt
[nauid@wind ~/linux_workshop 1%

-rw-r--r-- 1 nauid cluster 13 Sep 17 13:55 hello.txt
[nauid@wind ~/linux_workshop 1%

drwxr-xr-x 2 nauld cluster 31 Sep 17 13:55 .
41 nauild cluster 8192 Sep 17 13:56 ..
-rw-r--r-- 1 nauild cluster 13 Sep 17 13:55 hello.txt

NORTHERN ARIZONA @?@ LUNIVERSITY

Listing files: dot-files

Note the funny looking filenames there:
[NAUID@wind ~]$ 1s -la

drwx------ 2 NAUID cluster 4096 Sep 22 13:56|.
drwxr-xr-x 234 root root 8192 Sep 16 13:06/|..
-rW-r--r-- 1 NAUID cluster 213 Jul 11 2014 |.bashrc

File names that begin with a “” are (usually) hidden.
e “”Is the current directory

e “.”is the parent directory

 .bashrc is a hidden bash configuration file

NORTHERN ARIZONA N UNIVERSITY

Listing files: relative hierarchy

jobs_july.txt

[billy@rain
[billy@rain

[billy@rain

[billy@rain

[billy@rain
[billy@rain

[billy@rain

~ 1%
~/jobs 1%
filel file2
~/jobs 1%

~/jobs 1%

~/jobs 1%
~/jobs/2024 1%
filel file2
~/jobs/2024 1%

jobs_april.txt

Absolute vs relative paths

* File/dir locations can be absolute or relative
* Absolute paths start with “/” (“~” =“/home/nauid”)

* Relative paths are just filenames, or start with “.” or “. .” or a directory

[billy@wind ~/workshop 1%
/home/billy/workshop
[billy@wind ~/workshop 1%
filel file2

[billy@wind ~/workshop 1%

hello world! Same result now...
[billy@wind ~/workshop]% ...buuuuut after

hello world! cd’ing elsewhere?
[billy@wind ~/workshop 1%
hello world!

* Note that Linux filesystems are CASE SENSITIVE with regard to almost everything!!
* Also: not recommended to have spaces in filenames and directory names! It can be a pain.

NORTHERN ARIZONA N UNIVERSITY

More commands

cat <file> - print contents of a file to the screen

file <file> - print the type of a file: ascii, dir, symlink,...
mkdir <dirname> - create a directory name “dirname”

rmdir <dirname> - remove a directory named “dirname”

* rm <filename> -remove afile

* cd <dirname> - “open” directory “dirname”

 touch <file> - create an empty file, or update modified timestamp
*» less <file> - view a file with a useful interactive viewer

°man <command> - view the manual for a command (“q” to exit)

NORTHERN ARIZONA N UNIVERSITY

Lab 1 —directory structure

List the contents of the directory you arein()

Create a directory in your home directory named “linux” (
Change directory to the new directory “linux” ()

Create a directory named “is” inside of the linux directory (
Change directory to the “is” directory ()

Create a file in the ”is” directory named “awesome”
Change directory back to your home ()

Do a recursive listing on the “linux” directory:

10 Try this and note changes:

S2 e Bl o o= R =

Print your working directory, where you are currently ()

)

)

Lab 1 - Solution

[NAUID@wind ~]$ 1ls -1R linux

linux:
drwxr-xr-x 2 NAUID cluster 28 Sep 21 14:20 is
linux/1is:

-rw-r--r-- 1 NAUID cluster @ Sep 21 14:20 awesome

Wildcards

* While in the shell, you can select files/directories based on wildcards
¢ ? - matches any 1 character
o * - matches O, or 1, or more characters

* Note that this may not work within interactive programs
* Programs like Matlab or R (etc...) have shells with their own rules

NORTHERN ARIZONA N UNIVERSITY

Wildcard Examples

* While in the shell, you can specify files/directories based on wildcards
* Multiple wildcards can be specified at once

e 1s
e 1s
e 1s
e 1s

* . txt

lin*
*2024 %
20?4-fall*

ists all files/folders that end in “.txt”
ists all files/folders that start with “lin”

ists all files/folders with “2024” in their name
ist 2014-fall.pdf, 2014-fall.txt, 2024-sum.txt, etc

NORTHERN ARIZONA N UNIVERSITY

Demonstration: Bash basics & wildcards

e “cd” to the /common/contrib/tutorials/linux directory
e List all the filenames that end with “.pdf”
* List all the files that have the exact string “ADIOS” in their name

e List all the files in your home (~) directory from here

e “cd” to your home directory
* Show the sizes of all files in the first directory with ‘Tol” in their name

&

Review: Navigating the file-system

To navigate the system we can use use commands like:
move into/open a directory
print current directory (that you’re in)
print contents of a/current directory
remove (delete) a file

To get more/varied output from your commands:
* Some commands accept/require “input” args (e.g.)
* Most commands offer “options” (e.g.)

File/dir locations can be absolute or relative
* Absolute paths start with “/”

* Relative paths are just filenames, or start with “” or “..” or or a directory

&

Managing Files:

* Interpreting details
* Permissions and ownership

* Moving, copying, deleting files (and directories)

Managing Files: File permissions

drwxr-x 2 NAUID cluster 28 Sep 21 14:20 linux

1. The mode and type of the file, in this case a “d” (directory), mode 755
* From left to right: Type,User,Group,
* Typeisdirectory (d) (could also be “-” (file), “I” (link), others)
e User has read (r), write (w), and execute (x)
* Group has read (r) and execute (x) read + write+ exec=

(4=22) (2=2%) (1=29)

has read (r) and execute (x)
: : : user 4 + 2 + = 7
2. Number of hardlinks (you can kinda forget about this)
. . group 4+ 1= 5
3 & 4. The owning-user and owning-group
5. Size of the file in bytes other >
6. The date, of last modified = "mode” 755

7. The name of the file or directory

NORTHERN ARIZONA N UNIVERSITY

Changing file permissions

* Default permissions for files and directories:
* File: rw- for owning-user, r-- for group, and r-- for others
 Directory: rwx for owning-user, r-x for group, and r-x for others

e Change owner/owner-group

| i1 s

* chown :SICCS—BeeEman—lab some file

* Change mode (permissions)
* chmod g+rw some file —add read and write for group
 chmod +x some file - add execute to a file, for user,group,other

NORTHERN ARIZONA N UNIVERSITY

Managing files: commands

cp file target

- make a copy (“target”) OR copy INTO directory “target”

* If “target” is an existing directory, “cp” assumes you want a same-name copy there

mv file target

- move “file” to directory “target” OR rename to “target”

* If “target” is an existing directory, “mv” assumes you want to move “file” there

touch file
rmdir dir
mkdir dir

rm
m
m
rm

file

-+ file
-r dir
-rf dir

- create empty file, or update time stamp

- remove (empty, only!) directory

- make directory

- remove file

- force removal of file/directory (no verify prompt)
- recursively remove a directory

- force remove recursively (CAUTION!!IT)

NORTHERN ARIZONA N UNIVERSITY

Demonstration: Operating on multiple files

works like
e (Not) Including “hidden” dot-files (!!)
* Multiple sources -> single target

* Recursive copy for directories
* Forcing deletions
* Deleting non-empty directories

Lab 2 — Editing/moving files

Change directory to the linux/is directory ()

Rename the file “awesome” to be “best” ()

Make a directory in the “is” directory named “the” ()

Move the “best” file to the “the” directory ()

Edit the “best” file, with contents “of course!” (hnano, emacs, vi)
Copy the “best” file to the “is” directory, naming it “fun” (=)

Find out what type of file “fun” is ()

Print the contents of the “fun” file ()

*BONUS™ Make the file hidden

gol e o o g B e =

Lab 2 — Editing/moving files Solutions

NAUID@wind ~]$ cd linux/is
NAUID@wind ~/linux/is]$ mv awesome best
[NAUID@wind ~/linux/is]$ mkdir the
NAUID@wind ~/linux/is]$ mv best the
NAUID@wind ~/linux/is]$ cd the
[NAUID@wind ~/linux/is/the]$ nano best
NAUID@wind ~/linux/is/the]$ cd ..
NAUID@wind ~/linux/is]$ cp best fun
 NAUID@wind ~/linux/is]$ file fun

fun: ASCII text

[NAUID@wind ~/linux/is]$ cat fun

of course

Dealing with text (and text-data)

It’s all text! Everywhere!

* Text editors
» Pagers for viewing large files (most notably: “man” manuals)

* Not all screen text is equal
* Intended command output =/= error output

* Redirecting command output
 ...into new files, or appending to existing
e ...directly into another command (no intermediate file!)

* Finding and isolating specific file-contents

Editors (vs text-pagers)

Lots of editors: Pagers (text-pagers):
* Nano * Fill a different role than editors
* Simple to use * How you read “manual pages”
* Onscreen “menu”
o * less
* Vi, vim, €macs * arrow keys navigate (PgUp/PgDn also)
* more featureful * h enter help screen
* have learning curves . q exit
Start out using nano: * /startasearch

* n: next result

e ctrl-o: save (“O” as in write-Out) . N: prev result

* ctrl-x: exit (AND prompt to save)

NORTHERN ARIZONA N UNIVERSITY

Redirecting Input and Output

* Default system streams
* stdin/stdout/stderr = File Descriptors 0/1/2

° > Redirects output to another file, overwriting if it exists
°>> Appends to a file

* 2>&1 Redirects error messages to standard output

° &> Redirects stdout, and stderr to a file

¢ | (vertical bar) Redirects (“pipes”) output from
one program to another’s input (more on this later)

NORTHERN ARIZONA N UNIVERSITY

Redirection Examples

e 1s > out.txt - sends output from Is to “out.txt” file
e 1s >> out.txt - appends output from Is to “out.txt”
*ls foo 2> error.txt -sendsonlyerrorsto ”error.txt”

*ls foo &> out.txt - writes output and errors to out.txt
els | we -1 - send output from Is to the wc

(wordcount) program and counts lines

[billy@radar ~/abc]$ ls

hello.txt

[billy@radar ~/abc]$ 1ls hello.txt foo

ls: cannot access 'foo’': No such file or directory

hello.txt
[billy@radar ~/abc]$ 1ls hello.txt foo 2>err.txt >out.txt

[billy@radar ~/abc]$ grep ™ err.txt out.txt
ls: cannot access 'foo': No such file or directory NORTHERN ARIZCINA LUNIVERSITY

hello.txt

Lab 3 [guided] — Editing files

(enter this text, then ctrl-x)
Hello world!
The world is a big place.

* Try:

B 1a% (“-v” will invert results)

* Use grep recursively to find a term in any files nested within directories
[NAUID@wind ~/1linux]$

is/the/best:of coursel
is/fun:of course!l

Lab 3 [guided] — continued

 Remember the | symbol (pipe)?
 We can redirect the output of one command to the input of another

* Let’s add a few lines to our grepfile.txt so it looks like this:

Hello world!

The world is a big place
test 1

test 2

testing 3

* We can grep for test, and pipe the output to grep for the character “2”

[NAUID@wind ~/linux]$
test 1

test 2

testing 3

[NAUID@wind ~/linux]$
test 2

Dealing with processes

It’s all text! Everywhere! ...so how do | close/cancel something?

and list running processes
ends a running process (of yours)
* Ctrl-c to “force quit” an active process (usually)

Processes

* top — Real-time view all running processes on this login-node
* akin to task manager in windows
* Hotkey “u” —show only one user’s processes
* Hotkey “k” — kill a process (use ESC key to cancel)
* Hotkey “q” immediately exits

* ps —Shows current processes
* The “ps -u” option has a more useful format, including cpu %

* kill <process id> — Terminates a running process (if you are
the owner of the process)

NORTHERN ARIZONA N UNIVERSITY

Demonstration: Processes

* Run the program to view all processes currently running.
Alternatively, you can run for a one-time snapshot, and

* Look for your sleep process in the list. Specifically, look at the first
column labelled “PID”. This means “process id”. Take note of your
sleep process’s PID

* Press ' to quit top and get back to the terminal

* Type where PID is your sleep process PID. This will end
the sleep process

&

Lab 4 — Pipes and Processes

Start a new process by running sleep for 999 seconds |)
Open another shell and to ~/linux again

Find the PID of your sleep process using and

Kill your sleep process ()

Verify your process is gone by running your previous and
command

Do a long recursive listing of your linux directory, filter the results so only
filenames with the word “best” are returned, and send the output to a
file called results.txt (,)

7. List the contents of “results.txt” to verify the results ()
8. Remove the file “results.txt” ()

R

o

Lab 4 — Pipes and Processes Solutions

NAUID@wind:

NAUID@wind:

~/1linux$ sleep 999

~/1linux$ ps | grep sleep

46396 pts/0 00:00:00 sleep

NAUID@wind:

~/1inux$ kill 49396

[1]+ Terminated: 15 sleep 999

NAUID@wind

NAUID@wind
-PW-r--r--
NAUID@wind

:~/1inux$ ps | grep sleep
NAUID@wind:

~/1linux$ 1s -alR | grep best > results.txt

:~/1inux$ cat results.txt

1 NAUID cluster 11B Oct 22 11:45 best

:~/1inux$ rm results.txt

Some more-advanced stuff!

e VVariables

* Command substitution:
e getting output into a variable
* nesting one command within another!

* Loops
* (Soft-) Links

Variables

* Set your own variables: MYVAR=1234
* Un-set a variable: unset MYVAR
» Use existing variables by prepending them with $

* echo “$MYVAR” to display variable contents
* Best practice is to use double-quotes with echo
* But note that single-quotes prevent variable expansion

NORTHERN ARIZONA N UNIVERSITY

Variables - Example

$ MYVAR="this is my variable"”
$ echo $MYVAR

this is my variable

$ echo '$MYVAR'

$MYVAR

$ unset MYVAR

$ echo $MYVAR

NORTHERN ARIZONA @@ LUNIVERSITY

Command substitution

$
/usr/bin/bash

-rwXr-xr-x 1 root root 1.1M Feb 10 2824 /usr/bin/bash
-rwxr-xr-x 1 root root 1.1M Feb 106 2024 /usr/bin/bash

$
-rwxr-xr-x 1 root root 1.1M Feb 106 2024 /usr/bin/bash

NORTHERN ARIZONA @?@ LUNIVERSITY

Loops: simple one-liners

* One-line loop over “words”
$ for i in red blue green; do echo “$i is a color”; done
red is a color
blue is a color
green 1is a color
* One-line loop over consecutive numbers
$ for c in "seq 1 10 21 ; do echo “count is $c”; done
count 1is 1
count is 11

count is 21
* Use a custom variable, e.g. 1 and reference it with the $ sign, just like

any other variable

NORTHERN ARIZONA N UNIVERSITY

Loops: multiline & nested

for in

$ touch fileA fileB fileC do

$ 1s file* for L in a b ¢
. . . do

fileA fileB fileC echo "$NEL"

$ for name in " 1ls file* done
> do > done

2023a
name-cCco
5 PY 2023b

> done 2823 ¢
$ 1s file* 2024a

fileA-copy fileB-copy fileC-copy 2024b
2024c

NORTHERN ARIZONA N UNIVERSITY

Soft links

* We will focus on soft links for now; just know there are hard links too

* Soft links (AKA: symbolic links) are the most common type of links
that you will use/encounter
* In -s <existing file> <symlink name>

* Basically same as ‘shortcuts’ in Windows, or ‘aliases’ in Mac OS

$ 1n -s /scratch/NAUID /home/NAUID/scratch_link

$ cd ~

$ 1s -1 scr*

lrwxrwxrwx 1 NAUID cluster 4 Sep 22 10:15 scratch_link -> /scratch/NAUID

NORTHERN ARIZONA N UNIVERSITY

Questions?

* Lots more to Linux
* Try this book out for more:

* Refer to the advanced workshop!
* link / calendar /etc

http://linuxcommand.org/tlcl.php

	Default Section
	Slide 1: > Linux command-line for HPC
	Slide 2: Outline
	Slide 3: Introductions

	What is Linux
	Slide 4: What is Linux?
	Slide 5
	Slide 7: Linux continued

	The Command Line
	Slide 8: Let’s get started: The command-line
	Slide 9: Logging in
	Slide 10: I’m logged in, now what?

	Intro to the shell
	Slide 11: Intro to the shell
	Slide 12: Interacting with the shell
	Slide 13: Try some commands out
	Slide 14: About options (flags)

	Navigating the file-system
	Slide 15: Navigating the file-system
	Slide 16: Demonstration: Navigating the filesystem
	Slide 17: List files using extra options
	Slide 18: Listing files: dot-files
	Slide 19: Listing files: relative hierarchy
	Slide 20: Absolute vs relative paths
	Slide 21: More commands
	Slide 22: Lab 1 – directory structure
	Slide 23: Lab 1 - Solution
	Slide 24: Wildcards
	Slide 25: Wildcard Examples
	Slide 26: Demonstration: Bash basics & wildcards
	Slide 29: Review: Navigating the file-system

	Managing Files
	Slide 30: Managing Files:
	Slide 31: Managing Files: File permissions
	Slide 32: Changing file permissions
	Slide 33: Managing files: commands
	Slide 34: Demonstration: Operating on multiple files
	Slide 35: Lab 2 – Editing/moving files
	Slide 36: Lab 2 – Editing/moving files Solutions

	Dealing with text
	Slide 37: Dealing with text (and text-data)
	Slide 38: Editors (vs text-pagers)
	Slide 39: Redirecting Input and Output
	Slide 40: Redirection Examples
	Slide 41: Lab 3 [guided] – Editing files
	Slide 42: Lab 3 [guided] – continued

	Dealing with processes
	Slide 45: Dealing with processes
	Slide 46: Processes
	Slide 48: Demonstration: Processes
	Slide 49: Lab 4 – Pipes and Processes
	Slide 50: Lab 4 – Pipes and Processes Solutions

	More advanced
	Slide 51: Some more-advanced stuff!
	Slide 52: Variables
	Slide 53: Variables - Example
	Slide 54: Command substitution
	Slide 55: Loops: simple one-liners
	Slide 56: Loops: multiline & nested
	Slide 57: Soft links
	Slide 58: Questions?

