
Intro to Monsoon and Slurm

These slides:

https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

2024-09-05 presentation with Joseph Guzman

Get logged in!

From a computer:
– Connect to the NAU VPN if off-campus!

• Info: https://in.nau.edu/its/remote-services

– Open any web browser

– Login to http://ondemand.hpc.nau.edu

• Standard ‘abc123’ Louie ID & password

– Click on Clusters tab

– Select Monsoon login-node shell

These slides:

https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

•HIT RECORD!

Introductions

• Introduce yourself

– Name

– Department / Group

– What project(s) do you plan to use
monsoon for?

– Linux or Unix experience

– Previous cluster experience?

List of Topics

• Cluster education
– What is a cluster, exactly?

– Queues, scheduling and resource management

• Cluster Orientation
– Monsoon cluster specifics

– How do I use this cluster?

– Group resource limits

– Exercises

– Question and answer

Agenda

• (High-Performance) Cluster education

– What is a cluster, exactly?

– Job-queues, scheduling, and resource management

• Monsoon Cluster orientation

– How do I use this cluster?

– Group resource limits

– Exercises

– Question and answer

Cluster Resources

• Node

• Memory

• CPU’s

• GPU’s

• Licenses

MEMORY (e.g. DIMMs)

Cluster (of) Resources

• Node itself

• Memory

• CPU’s

• GPU’s

• Networking

• Licenses

MEMORY (i.e. DIMMs)

Inside a (single) compute-node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s job

Bill’s job Mary’s job

Cluster = Login-nodes + Compute-nodes + etc

Monsoon (≈4000 cores)

Largest Cluster!

8.7M cores

Small Cluster!

Dual core?

Monsoon Today
(summarized from https://in.nau.edu/arc/details)

• The Monsoon cluster is a resource available to the
NAU research enterprise

• 107 compute-nodes (cn1 ∼ cn108)
• 26TB memory - 128GB/node min, 2TB max
• 27 GPUs, NVIDIA Tesla K80, P100, V100, A100
• 4048 cores (Intel + AMD)

• Red Hat Enterprise Linux 8.9
• High speed interconnect: FDR, and HDR Infiniband
• Storage

• 1PB scratch high-speed storage (Lustre)
• 615TB long-term storage (ZFS)

What is a queue?

• Normally thought of as a line, FIFO (Line at Starbucks)

• Queues on a cluster can be as basic as a FIFO, or far more
advanced with dynamic priorities taking into consideration
many factors

What is scheduling?

• “A plan or procedure with a goal of completing some objective
within some time frame”

• Scheduling for a cluster at the basic level is much the
same. Assigning work to computers to complete objectives within
some time availability

• Not exactly that easy though. Many factors come into play
scheduling work on a cluster.

• A scheduler needs to know what resources are available on the
cluster in order to make accurate scheduling decisions

Scheduling

• A scheduler needs to know what resources are available on the
cluster in order to make accurate scheduling decisions

• Assignment of work on a cluster is carried out most efficiently
with the scheduler and resource manager working together

• Resource availability changes by the minute

Resource Manager

• Assignment of work on a cluster is
carried out most efficiently with the
scheduler and resource manager
working together

• Monitoring resource availability and
health
• Accounting of resources

• Allocation of resources

• Execution of resources

Our Scheduling Goals

• Optimize quantity of work

• Optimize usage of resources

• Service all users and projects justly

• Make scheduling decisions transparent

Cluster Resources

• Node

• Memory

• CPU’s

• GPU’s

• Licenses

MEMORY (e.g. DIMMs)

Many scheduling methods

• FIFO

– Simply first in first out

• Backfill

– Runs smaller jobs with lower resource requirements while larger jobs
wait for higher resource requirements to be available

• Fairshare

– Prioritizes jobs based on a users recent resource consumption

Inside a (single) Node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s
job

Bill’s job Mary’s job

Monsoon Today
(summarized from https://in.nau.edu/arc/details/)

• The Monsoon cluster is a resource available to the NAU research
enterprise

• 107 systems (nodes) – cn[1-33,35-108]
• 4048 Intel, and AMD cores
• 27 GPUs, NVIDIA Tesla K80, P100, V100, A100
• Red Hat Enterprise Linux 8.10
• 26TB memory - 128GB/node min, 2TB max
• 1PB high-speed scratch storage (Lustre)
• 615TB long-term storage (ZFS)
• High speed interconnect: FDR, and HDR Infiniband

Monsoon scheduling

• Combination of scheduling methods

• Currently configured to utilize backfill along with a multifactor
priority system to prioritize jobs

Slurm … yummm

• Slurm (Simple Linux Utility for Resource Management)

• Excellent resource manager and scheduler

• Precise control over resource requests

• Developed at LLNL, continued by SchedMD

• Used everywhere from small clusters to the largest clusters:

– Frontier (#1), 8.7M cores, 1,102 PF, 21 kW - USA

– Fugaku (#2), 7.6M cores, 537 PF, 30 kW - Japan

Factors attributing to priority

• Fairshare (predominant factor)
– Priority points determined on users’ recent

resource usage

– Decay half life over 12 hours

• QOS (Quality of Service)
– Some QOS have higher priority than others,

for instance: debug

• Age – how long has the job sat pending

• Job size - the number of nodes/cpus a
job is requesting

Storage

• /home – 10 GB quota
– Keep your scripts and executables here
– Snapshotted twice a day: /home/.snapshot
– Please do not write job output (logs, results) here!!
– Run the command “quota” now

• /scratch – 15 TB quota (also 2M files quota)
– 1PB total space, 30 day retention
– Very fast storage, capable of 20GB/sec
– Checkpoints, logs
– Keep all temp/intermediate data here
– Should be your default location to perform input/output

Storage

• /projects – 615TB
– Long-term storage project shares

– 5TB is assigned to faculty member for group to share

– $24/TB/year above 5TB

– Snapshots available

– Backups available - $.10/GB/month

• /common
– Cluster support share

– Contrib: place to put software/libs/confs/db’s for others use

Data Workflow

1. Keep scripts and executables in /home (or on Ondemand)

2. Write logs/temp/intermediate data to /scratch/<uid>

3. Copy data to /projects/<group_project>, for group storage
and reference in other projects

4. Cleanup /scratch files

** Remember, /scratch is a scratch filesystem, used for high-
speed temporary, and intermediate data

Remote storage access

• Via Ondemand in a web browser
• Drag and drop files

• https://in.nau.edu/arc/overview/file-management/
• scp command/protocol

– scp <files> <nauid>@dtn1.hpc.nau.edu:/scratch/<nauid>/
– GUI examples: WinSCP on windows, Fetch for mac

• samba /smb / cifs / “windows file sharing” / “shared drive”
– Windows: \\shares.hpc.nau.edu\cirrus
– Mac: smb://shares.hpc.nau.edu/cirrus

• Globus
• https://nau.edu/high-performance-computing/globus/

https://in.nau.edu/arc/overview/file-management/
https://nau.edu/high-performance-computing/globus/

Data transfer node

• We have a dedicated (login-node) system for transferring data

• This host’s name is dtn1.hpc.nau.edu

• Use dtn1 for moving large datasets around on monsoon, and
to/from the internet

Groups

• NAU has a resource called Enterprise groups. Enterprise Groups are
utilized to manage who has access to specific folders and files on the
cluster

• They are available to you on the cluster if you’d like to manage access to
your data

• https://my-old.nau.edu
– “Open directory services”

– “Enterprise groups”

– Take a look at our FAQ :: https://nau.edu/high-performance-computing/faqs/

– If they are not working for you, contact ITS Solution Center

• What groups are you in? Run the command “groups”, or ”id”

http://my.nau.edu

Modules

• Software environment management handled by the modules
package management system. This is available through the
Command Line Interface (cli)

• module avail …what modules are available

• module list …modules currently loaded

• module load <module name> …load a package module

• module display <module name> …detailed information
including environment variables effected

Software

• Matlab

• Mathematica

• R

• SAS

• Qiime2

• Anaconda Python

• Lots of bioinformatics programs

• Request additional software to be installed!

Requesting Software

• You can install quite a bit of R, and python software yourself!
• For R

– module load R
– R
– install.package(c(package))

• For python
– module load anaconda3/<ver>
– conda create -n myenv
– conda activate myenv
– conda install package

• You are also welcome to compile your own programs

• If you’d like our help installing a piece of software, please have your research sponsor request it
here:
– https://in.nau.edu/high-performance-computing/request-software/

MPI

• Quick note on MPI

• Message Passing Interface for parallel computing

• Open MPI set as default MPI

• Example MPI job script:
– /common/contrib/examples/job_scripts/mpijob.sh

Interacting with Slurm

• What resources are needed?
– 2 cpus, 12GB memory, for 2 hours?

• What steps are required?
– Run prog1, then prog2 … etc

– Are the steps dependent on one another?

• Can your work, or project be broken up into smaller pieces?
Smaller pieces can make the workload more agile.

• How long should your job run for?

• Is your software multithreaded, uses OpenMP or MPI?

Job Scripts and sbatch

• Except for limited testing and debugging, all jobs on the cluster
should be run via a shell script which is typically denoted by
the extension .sh on the filename

• sbatch shell scripts are composed of three sections:

1. Slurm job parameters (#SBATCH)

2. module loading

3. srun job steps/statements for the actual work

Example Job script

• #!/bin/bash
• #SBATCH --job-name=test
• #SBATCH --output=/scratch/NAUID/output.txt # the stdout from your job goes here
• #SBATCH --time=20:00 # shorter time = sooner

start
• #SBATCH --chdir=/scratch/NAUID # default location slurm

searches

• # replace this module with software-
• # modules required by your jobscript
• module load anaconda3/2021.11 # loads a specific anaconda

python

• # example job commands: each srun command is
• # a job step, so this job will have 2 steps
• srun sleep 300
• srun python -V

Example Job script (in Ondemand’s editor)

Job Parameters

You want Switches needed

More than one cpu for the job --cpus-per-task=2, or -c 2

To specify an ordering of your jobs
--dependency=afterok:job_id, or -d
job_id

Split up the output, and errors --output=result.txt --error=error.txt

To run your job at a particular
time/day

--begin=16:00 --begin=now+1hour --
begin=2010-01-20T12:34:00

Add MPI tasks/ranks to your job --ntasks=2, or -n 2

To control job failure options --norequeue –requeue

To receive status email --mail-type=ALL

Contraints and Resources

You want Switches needed

To choose a specific node feature
(e.g. avx2)

--constraint=avx2

To use a generic resources (e.g. a
gpu)

--gres=gpu:tesla:1, -G1

To reserve a whole node for yourself --exclusive

To chose a partition --partition

Cluster = Login-nodes + Compute-nodes + etc

Interacting with Monsoon

Three Methods (must be on NAU Internet or NAUVPN):

● Connect to OpenOndemand web interface at: https://ondemand.hpc.nau.edu

● Via SSH protocol in a command-line shell

○ Type “ssh <nau-id>@<login-node>” within Powershell (Windows) or Terminal (Mac,*nix)
○ login nodes:

■ monsoon.hpc.nau.edu (for research)
■ wind.hpc.nau.edu
■ ondemand.hpc.nau.edu
■ rain.hpc.nau.edu (for class work)

○ data transfer nodes:
■ dtn1.hpc.nau.edu (special-purpose node -- use for any large data transfers!)

● SMB connection (files only -- no linux tools/commands)

○ \\shares.hpc.nau.edu\cirrus
○ see guide here: https://in.nau.edu/arc/overview/file-management/

https://ondemand.hpc.nau.edu
https://in.nau.edu/arc/overview/file-management/

Login node vs Compute node

• When you log into “monsoon” interactively or via Ondemand
you are “placed” on a login node.

• The login node is a shared system used solely for:
– Developing scripts

– Transferring small data

– Submitting work to the scheduler

– Analyzing results

– Debug work less than 30 minutes in length

• The compute nodes are what make the cluster powerful!

Ondemand

• Open Ondemand (OOD) is an interactive Graphical User
Interface (gui) to the Cluster. You access it from your web
browser at https://ondemand.hpc.nau.edu

Ondemand File Explorer

• The file explorer is used to explore, and transfer the files in
your home, scratch, or other areas on the cluster.

Ondemand Job Composer

• The Job Composer is used to create and run jobs.

Exercise 1

Create a simple job in the job composer from the template that you will then
submit to the scheduler to run on the compute nodes.
• From Ondemand, click the Jobs > Job Composer menu
• Click on New Job and select From Default Template
• Click on Open Editor (bottom of right-column of page)
• Change all “NAUID” to be your nau user-ID, e.g.: abc123!
• Name your job: “exercise1”
• Name & direct your output to /scratch/<NAUID>/exercise1.out
• Make your jobscript load the module named “workshop”
• Make your jobscript run the “date” command

– i.e.: “srun date”

• Additionally, run the “exercise1” command, as well
• Save (in this tab), and then submit your job via the job composer (previous tab)
• Use the File Explorer to examine your output (Files > /scratch/NAUID)
• Make a note of the secret code in exercise1.out

Exercise 1 (CLI)

Exercise 2

• Create a new job using New Job > From Specified Path
• Source path: /common/contrib/examples/job_scripts
• Name: “longjob” (this is your name for your job)
• Script name: “longjob.sh” (this is our existing filename)
• For Cluster and Account: leave empty
• Save, select “longjob” from the Jobs list, and click Open Editor button as before
• Change all “NAUID” to be your nau ID
• Make your jobscript load the module named “workshop”
• Make your jobscript run the “exercise2” command

– e.g. “srun exercise2”

• Make your job sleep for 5 minutes (sleep 300)
– Sleep is a command that creates a lazy process that … sleeps and does nothing

• Save, and then Submit
• Monitor your job by selecting Jobs and Active Jobs from your Dashboard.
• Examine the output in long.txt
• Make a note of the secret code from long.txt

Exercise 2 (CLI)

Command-line access

• Once you have the basics down using Ondemand, then the
power of the cluster is exposed through the command-line
interface (CLI)

• We will be utilizing a CLI built-in to Ondemand

• Follow along after opening a CLI (from “Clusters” menu)

• Feel free to tryout the commands that we will be discussing

• Tip: The Monsoon CLI may also be accessed outside of ondemand via
an “ssh client” such as Putty on Windows or Terminal on the Mac.

The Ondemand CLI
• You may access the CLI from the dashboard and selecting

Clusters > Monsoon login node shell

Note: When logging in,
ssh does NOT give
interactive feedback
while you enter your
password, but it will
evaluate your password
attempt upon hitting
enter!

Cluster info

• sinfo

– view information about SLURM nodes and partitions.

• sinfo -N –l

• sinfo –R

– List reasons for downed nodes and partitions

Interactive / Debug Work

• Run your compiles and testing on the cluster nodes by:

– srun -p all gcc hello.c –o a.out

– srun --qos=debug -c12 make -j12

– srun Rscript analysis.r

– srun python analysis.py

– Try this now:
• srun hostname

• hostname

Long Interactive work

• salloc
– Obtain a SLURM job

allocation that you can
work with for an
extended amount of
time interactively.

– This is useful for
testing/debugging for
an extended amount
of time.

[user1@wind ~]$ salloc -c 8 --time=2-00:00:00

salloc: Granted job allocation 33442

[user1@wind ~]$ srun python analysis.py

[user1@wind ~]$ exit

salloc: Relinquishing job allocation 33442

[user1@wind ~]$ salloc -N 2

salloc: Granted job allocation 33443

[user1@wind ~]$ srun hostname

cn3

cn2

[user1@wind ~]$ exit

salloc: Relinquishing job allocation 33443

Submitting non-interactive jobs

The sbatch command is used to submit batch jobs to the slurm
workload manager. Jobs submitted with sbatch are placed in a
queue where they wait for resources to become available.

[user1@wind ~]$ sbatch jobscript.sh

Submitted batch job 85223

– slurm returns a job id for your job that you can use to monitor or
modify constraints

Monitoring your job

• jobstats: your main tool
• sprio: view the factors that comprise a job’s scheduling priority

• sprio –l

-- list priority of users jobs in pending state

• sprio -o “%j %u … “

• sprio -w

Monitoring your job

• squeue

– view information about jobs located in the SLURM scheduling queue.

• squeue --start

• squeue -u login

• squeue -o “%j %u … “

• squeue -p partitionname

• squeue -S sortfield

• squeue -t <state> (PD or R)

Controlling your job

• scancel

– Used to signal jobs or job steps that are under the control of Slurm.

• scancel jobid

• scancel -n jobname

• scancel -u mylogin

• scancel -t pending (only yours)

Controlling your job

• scontrol

– Used to view and modify Slurm configuration and state

– Can change job constraints while it’s in the pending state, but once
the job starts, it can no longer be modified

• scontrol show job 85224

• scontrol update jobid=6880341 timelimit=4:00:00

Job Accounting

• sacct
– displays accounting data for of your jobs and job steps in the SLURM job

accounting log or SLURM database

• sacct -j jobid -o jobid,elapsed,maxrss
• sacct -N nodelist
• sacct -u mylogin

• Try our sacct wrapper “jobstats”
– jobstats -r
– jobstats -j <jobid>

Job Accounting

• sshare

– Tool for listing the shares of associations to a cluster.

• sshare -l : view and compare your groups cpu minutes usage

• sshare -a : view all users fairshare

• sshare –A –a <account> : view all members in your account
(group)

• group_efficiency <account>

Limits on the account (group)

• Limits are in place to prevent intentional or unintentional
misuse of resources to ensure quick and fair turn around times
on jobs for everyone.

• Groups are limited to a total number of cpu minutes in use at
one time: 5M, and gpu minutes: 64K

• This resource limit mechanism is referred to as:
“TRESRunMins”.

• This limiting mechanism has nothing to do with priority!

Helpful Linux Commands
List Files ls

options -l – to show more information

Change Directory cd <directory path>
cd by itself will return you to your home directory

Show/print current working directory pwd

Copy Files cp <source> <destination>
use a period for the destination to copy a file to your current
directory

Move or rename a file mv <source> <destination>

Delete a file rm <filename>

Create a directory mkdir <directory name>

View contents of a file more <filename>
less <filename>
cat <filename>

Edit a file nano <filename>

Exit your terminal session (log off) exit

Exercise 3 via CLI

Get to know monsoon and Slurm, on your own. Start by opening a
shell to Monsoon.

1. How many nodes make up monsoon?
– Hint: use “sinfo”
– How many nodes are in the gpu partition?

3. How many jobs are currently in the running state ?
– Hint: use “squeue -t R”

4. How many jobs are currently in the pending state? Why?
– Hint: use “squeue –t PD”

Exercise 4 via CLI

• Copy job script and edit:
– /common/contrib/examples/job_scripts/lazyjob.sh

• Edit the job, change NAUID to be your id
• Save the job
• Submit the job (sbatch lazyjob.sh), it will take 65 sec

to complete
• Use sstat and squeue to monitor the job

– sstat -j <jobid>, and squeue –u <userid>

• Review the resources that the job used
– jobstats -r

• We are looking for “MaxRSS”, MaxRSS is the max
amount of memory used

• Edit the job scripts memory request, reduce the
memory being requested in MB and resubmit, edit
“--mem=“ , e.g. --mem=600

• Review the resources that the optimized job utilized
once again
– jobstats -r

• Ok, memory looks good, but notice that the usercpu is the
same as the elapsed time

Usercpu = num utilized cpus * elapsed time

• This is because the application we were running only used
1 of the 4 cpus that we requested

• Edit the lazy job script, comment out first srun command,
and uncomment the second srun command.

• Resubmit
• Rerun jobstats -r, notice now usercpu is a multiple times

the elapsed time, in this case (4). Because we were
allocated 4 cpus, and used 4 cpus.

• Now address the egregious time estimate!
• Make a note of the secret code from lazy.txt!

Archived Job scripts

Every job script that is submitted to slurm on monsoon is
archived for three reasons:

1. Convenience – if you forget what script was used for what
job, you can find out!

2. Support assistance – we can find the job script that was used
in your job to help troubleshoot with you.

3. Security / stability – in case of any security or stability issues,
we can connect issues and outages to associated jobs

Retrieval of a job script

• Archived job scripts, and their environment are stored here:
– /common/jobscript_archive/<user>/<year>/<month>
– <job id>.sh – job script
– <job id>.env – job scripts environment
– Only the individual researcher and our support group can access their job scripts

• Example:
• User abc123, accessing job id 2600 from March, 2021
• cat /common/jobscript_archive/abc123/2021/03/2600*.sh
• cp /common/jobscript_archive/abc123/2021/03/2600*.sh ~/

• Use “showscript” to make it easy!!!!

Showscript Demo

Checking your quotas

• From time to time you may need to examine how much space
you are using in the various monsoon storage areas

Changing Your Default Account

• All researchers have a default slurm account to track usage

• See it now by: “sacctmgr show user name=<NAUID>”

• Some researchers belong to multiple slurm accounts

• Example to override the default:

• #SBATCH --account=prof_lastname

Confirming Your Account

• This is a required step for your account to be fully enabled!

• After completing the exercises: one, two, and four, you will
have three, 32 character alpha-numeric codes

• With the codes in hand, confirm your monsoon account with
the commands:
– module load workshop

– confirm_user

• More information here:
– https://in.nau.edu/arc/obtaining-an-account/

https://in.nau.edu/arc/obtaining-an-account/

Optimizing Your Cluster Use

• To get the most out of the cluster for yourself and your team,
it is important to optimize the settings for your jobs.

• Optimization includes memory requested, time for the job to
run, number of cpus

Slurm Arrays!

Slurm Arrays Exercise

• From your scratch directory: “/scratch/nauid”

• tar xvf /common/contrib/examples/bigdata_example.tar

• cd bigdata

• edit the file “job_array.sh” so that it works with your nau id
replacing all NAUID with yours

• Submit the script “sbatch job_array.sh”

• Run “squeue”, notice there are 5 jobs running, how did that
happen!

Keep these tips in mind

• Know the software you are running, is it multi-threaded?

• Request resources accurately

• Supply an accurate time limit for your job

• Don’t be lazy, it will affect you and your group negatively

Common Questions

• Should I use OnDemand or the command line?

– Power users will tend to use command line

– However, the terminal in ondemand is worth using all the time

Question and Answer

• More info here:
http://nau.edu/arc

hpcsupport@nau.edu

• Job efficiency
– http://metrics.hpc.nau.edu

• FREE – Linux command line book:
– http://linuxcommand.org/tlcl.php

– Info here: https://in.nau.edu/arc/external-resources/linux-resources/

• And on the nauhpc listserv
– nauhpc@lists.nau.edu

http://nau.edu/arc
http://metrics.hpc.nau.edu/
http://linuxcommand.org/tlcl.php
https://in.nau.edu/arc/external-resources/linux-resources/
mailto:nauhpc@lists.nau.edu

Exercise 1 (CLI)

• cp /common/contrib/examples/job_scripts/exercise1.sh ~/
• nano exercise1.sh (or another editor)
• Replace all occurrences of “NAUID” to be your nau user-ID, e.g.: abc123!
• Name your job (--job-name): “exercise1”
• Set --output to be /scratch/<NAUID>/exercise1.out

• Example: --output=/scratch/abc123/exercise1.out

• Make your jobscript load the module named “workshop”
• Example: module load workshop

• Make your jobscript run the “date” command
• Example: “srun date”

• Additionally, run the “exercise1” command, as well
• Example: “srun example1”

• Save the file
• For nano: cntrl x, and “yes”

• Submit the batch script to slurm
• sbatch exercise1.sh

• Make a note of the secret code in exercise1.out

Next Slide: Exercise 2 (CLI)

Exercise 2 (CLI)

• cp /common/contrib/examples/job_scripts/exercise2.sh ~/
• nano exercise2.sh

• Replace all occurrences of NAUID with your nau ID, e.g. abc123

• Name your job output “exercise2.out”

• Example: --output=/scratch/abc123/exercise2.out

• Make your jobscript load the module named “workshop”

• Example: ”module load workshop”

• Make your jobscript run the “exercise2” command

• Example: “srun exercise2”

• Make your job sleep for 5 minutes (sleep 300)

• Example: “srun sleep 300”

• Sleep is a command that creates a lazy process that … sleeps and does nothing

• Save the file

• For nano: cntrl x, and “yes”

• Submit the batch script to Slurm

– Example: “sbatch exercise2.sh”

• Monitor your job utilizing “squeue -u <NAUID>”

• Examine the output in excercise2.out

• Make a note of the secret code from exercise2.out

Next Slide: Command-line Access

	Slide 1: Intro to Monsoon and Slurm
	Slide 2: Get logged in!
	Slide 3
	Slide 4: Introductions
	Slide 5: List of Topics
	Slide 6: Agenda
	Slide 7: Cluster Resources
	Slide 8: Cluster (of) Resources
	Slide 9: Inside a (single) compute-node
	Slide 10: Cluster = Login-nodes + Compute-nodes + etc
	Slide 11: Monsoon (≈4000 cores)
	Slide 12: Largest Cluster!
	Slide 13: Small Cluster!
	Slide 16: Monsoon Today (summarized from https://in.nau.edu/arc/details)
	Slide 17: What is a queue?
	Slide 18: What is scheduling?
	Slide 19: Scheduling
	Slide 20: Resource Manager
	Slide 21: Our Scheduling Goals
	Slide 22: Cluster Resources
	Slide 23: Many scheduling methods
	Slide 24: Inside a (single) Node
	Slide 26: Monsoon Today (summarized from https://in.nau.edu/arc/details/)
	Slide 27: Monsoon scheduling
	Slide 28: Slurm … yummm
	Slide 32: Factors attributing to priority
	Slide 33: Storage
	Slide 34: Storage
	Slide 35: Data Workflow
	Slide 36: Remote storage access
	Slide 37: Data transfer node
	Slide 38: Groups
	Slide 39: Modules
	Slide 40: Software
	Slide 41: Requesting Software
	Slide 42: MPI
	Slide 43: Interacting with Slurm
	Slide 44: Job Scripts and sbatch
	Slide 45: Example Job script
	Slide 46: Example Job script (in Ondemand’s editor)
	Slide 47: Job Parameters
	Slide 48: Contraints and Resources
	Slide 50: Cluster = Login-nodes + Compute-nodes + etc
	Slide 51: Interacting with Monsoon
	Slide 52: Login node vs Compute node
	Slide 53: Ondemand
	Slide 54: Ondemand File Explorer
	Slide 55: Ondemand Job Composer
	Slide 56: Exercise 1
	Slide 57: Exercise 2
	Slide 58: Command-line access
	Slide 59: The Ondemand CLI
	Slide 60: Cluster info
	Slide 61: Interactive / Debug Work
	Slide 62: Long Interactive work
	Slide 63: Submitting non-interactive jobs
	Slide 64: Monitoring your job
	Slide 65: Monitoring your job
	Slide 67: Controlling your job
	Slide 68: Controlling your job
	Slide 69: Job Accounting
	Slide 70: Job Accounting
	Slide 72: Limits on the account (group)
	Slide 78: Helpful Linux Commands
	Slide 79: Exercise 3 via CLI
	Slide 80: Exercise 4 via CLI
	Slide 81: Archived Job scripts
	Slide 82: Retrieval of a job script
	Slide 83: Showscript Demo
	Slide 84: Checking your quotas
	Slide 85: Changing Your Default Account
	Slide 86: Confirming Your Account
	Slide 87: Optimizing Your Cluster Use
	Slide 88: Slurm Arrays!
	Slide 89: Slurm Arrays Exercise
	Slide 90: Keep these tips in mind
	Slide 91: Common Questions
	Slide 92: Question and Answer
	Slide 94: Exercise 1 (CLI)
	Slide 95: Exercise 2 (CLI)

