
Intro to Monsoon and Slurm

2024-01-24

Slides:
https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

Supplemental video:
https://rcdata.nau.edu/hpcpub/workshops/odintro.mp4

https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

Get logged in!

• Slides here:
– https://rcdata.nau.edu/hpcpub/workshops/odintro.pdf

• From a Computer:
– Log into NAU VPN if off-campus!

• Instructions here: https://in.nau.edu/its/remote-services/
• VPN requires Two Factor Authentication

– https://nau.service-now.com/kb_view.do?sysparm_article=KB0013321

– Open a web browser
• May need to search in start menu for it

– Browse to http://ondemand.hpc.nau.edu
• Log in with your_louie_id

– Click on Clusters tab, and select Monsoon login-node shell

https://in.nau.edu/its/remote-services/
https://nau.service-now.com/kb_view.do?sysparm_article=KB0013321
mailto:your_id@monsoon.hpc.nau.edu

•HIT RECORD! ☺

Introductions

• Introduce yourself
– Name

– Department / Group

– What project(s) do you plan to use
monsoon for?

– Linux or Unix experience

– Previous cluster experience?

List of Topics

• Cluster education
– What is a cluster, exactly?
– Queues, scheduling and resource management

• Cluster Orientation
– Monsoon cluster specifics
– How do I use this cluster?
– Group resource limits
– Exercises
– Question and answer

What is a queue?

• Normally thought of as a line, FIFO (Line at Starbucks)

• Queues on a cluster can be as basic as a FIFO, or far more
advanced with dynamic priorities taking into consideration
many factors

What is scheduling?

• “A plan or procedure with a goal of completing some objective
within some time frame”

• Scheduling for a cluster at the basic level is much the
same. Assigning work to computers to complete objectives
within some time availability

• Not exactly that easy though. Many factors come into play
scheduling work on a cluster.

Scheduling

• A scheduler needs to know what resources are available on the
cluster in order to make accurate scheduling decisions

• Resource availability changes by the minute

• Assignment of work on a cluster is carried out most efficiently
with the scheduler and resource manager working together

Resource Manager

• Monitoring resource availability and health

• Allocation of resources

• Execution of resources

• Accounting of resources

Our Scheduling Goals

• Optimize quantity of work

• Optimize usage of resources

• Service all users and projects justly

• Make scheduling decisions transparent

Cluster Resources

• Node

• Memory

• CPU’s

• GPU’s

• Licenses

MEMORY (e.g. DIMMs)

Many scheduling methods

• FIFO
– Simply first in first out

• Backfill
– Runs smaller jobs with lower resource requirements while larger jobs

wait for higher resource requirements to be available

• Fairshare
– Prioritizes jobs based on a users recent resource consumption

Inside a (single) Node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s job

Bill’s job Mary’s job

Cluster = Login-nodes + Compute-nodes + etc

Monsoon Today
(summarized from https://in.nau.edu/arc/details/)

• The Monsoon cluster is a resource available to the NAU research
enterprise

• 107 systems (nodes) – cn[1-33,35-108]
• 4048 Intel, and AMD cores
• 27 GPUs, NVIDIA Tesla K80, P100, V100, A100
• Red Hat Enterprise Linux 8.9
• 26TB memory - 128GB/node min, 2TB max
• 1PB high-speed scratch storage (Lustre)
• 615TB long-term storage (ZFS)
• High speed interconnect: FDR, and HDR Infiniband

Slurm … yummm

• Slurm (Simple Linux Utility for Resource Management)

• Excellent resource manager and scheduler

• Precise control over resource requests

• Developed at LLNL, continued by SchedMD

• Used everywhere from small clusters to the largest clusters:

– Frontier (#1), 8.7M cores, 1,102 PF, 21 kW - USA

– Fugaku (#2), 7.6M cores, 537 PF, 30 kW - Japan

Small Cluster!

Dual core?

Largest Cluster!

8.7M cores

Monsoon scheduling

• Combination of scheduling methods

• Currently configured to utilize backfill along with a multifactor
priority system to prioritize jobs

Factors attributing to priority

• Fairshare (predominant factor)
– Priority points determined on users recent resource usage

– Decay half life over 12 hours

• QOS (Quality of Service)
– Some QOS have higher priority than others, for instance: debug

• Age – how long has the job sat pending

• Job size - the number of nodes/cpus a job is requesting

Storage

• /home – 10GB quota
– Keep your scripts and executables here
– Snapshotted twice a day: /home/.snapshot
– Please do not write job output (logs, results) here!!
– Run the command “quota” now

• /scratch – 1PB total space, 30 day retention
– Very fast storage, capable of 20GB/sec
– Quota: 15TB, 2M files
– Checkpoints, logs
– Keep all temp/intermediate data here
– Should be your default location to perform input/output

Storage

• /projects – 615TB
– Long-term storage project shares
– 5TB is assigned to faculty member for group to share
– $24/TB/year above 5TB
– Snapshots available
– Backups available - $.10/GB/month

• /common
– Cluster support share
– Contrib: place to put software/libs/confs/db’s for others use

Data Flow

1. Keep scripts and executables in /home or in Ondemand

2. Write logs/temp/intermediate data to /scratch/<uid>

3. Copy data to /projects/<group_project>, for group storage
and reference in other projects

4. Cleanup /scratch files

** Remember, /scratch is a scratch filesystem, used for
high-speed temporary, and intermediate data

Remote storage access

• Via Ondemand
– Drag and drop files

• scp
– scp <files> <nauid>@dtn1.hpc.nau.edu:/scratch/<nauid>
– WinSCP (windows)
– Fetch (mac)

• Download from: nau.edu/its/software

• samba / cifs
– Windows: \\shares.hpc.nau.edu\cirrus
– Mac: smb://shares.hpc.nau.edu/cirrus

• Globus
– https://nau.edu/high-performance-computing/globus/

mailto:nauid@monsoon.hpc.nau.edu
https://nau.edu/high-performance-computing/globus/

Data transfer node

• We have a dedicated (login-node) system for transferring data

• This host’s name is dtn1.hpc.nau.edu

• Use dtn1 for moving large datasets around on monsoon, and
to/from the internet

Groups

• NAU has a resource called Enterprise groups. Enterprise Groups are
utilized to manage who has access to specific folders and files on the
cluster

• They are available to you on the cluster if you’d like to manage access to
your data

• https://my-old.nau.edu
– “Open directory services”
– “Enterprise groups”
– Take a look at our FAQ :: https://nau.edu/high-performance-computing/faqs/
– If they are not working for you, contact ITS Solution Center

• What groups are you in? Run the command “groups”, or ”id”

http://my.nau.edu

Modules

• Software environment management handled by the modules
package management system. This is available through the
Command Line Interface (cli)

• module avail …what modules are available
• module list …modules currently loaded
• module load <module name> …load a package module
• module display <module name> …detailed information

including environment variables effected

Software

• Matlab
• Mathematica
• R
• SAS
• Qiime2
• Anaconda Python
• Lots of bioinformatics programs
• Request additional software to be installed!

Requesting Software

• You can install quite a bit of R, and python software yourself!
• For R

– module load R
– R
– install.package(c(package))

• For python
– module load anaconda3/<ver>
– conda create -n myenv
– conda activate myenv
– conda install package

• You are also welcome to compile your own programs

• If you’d like our help installing a piece of software, please have your research sponsor request it here:
– https://in.nau.edu/high-performance-computing/request-software/

MPI

• Quick note on MPI

• Message Passing Interface for parallel computing

• Open MPI set as default MPI

• Example MPI job script:
– /common/contrib/examples/job_scripts/mpijob.sh

Interacting with Slurm

• What resources are needed?
– 2 cpus, 12GB memory, for 2 hours?

• What steps are required?
– Run prog1, then prog2 … etc
– Are the steps dependent on one another?

• Can your work, or project be broken up into smaller pieces? Smaller
pieces can make the workload more agile.

• How long should your job run for?
• Is your software multithreaded, uses OpenMP or MPI?

Job Scripts and sbatch

• Except for limited testing and debugging, all jobs on the cluster
should be run via a shell script which is typically denoted by
the extension .sh on the filename

• sbatch shell scripts are composed of three sections:

1. Slurm job parameters (#SBATCH)

2. module loading

3. srun job steps/statements for the actual work

Example Job script

• #!/bin/bash
• #SBATCH --job-name=test
• #SBATCH --output=/scratch/NAUID/output.txt # the stdout from your job goes here
• #SBATCH --time=20:00 # shorter time = sooner start
• #SBATCH --chdir=/scratch/NAUID # default location slurm searches

• # replace this module with software-
• # modules required by your jobscript
• module load anaconda3/2021.11 # loads a specific anaconda python

• # example job commands: each srun command is
• # a job step, so this job will have 2 steps
• srun sleep 300
• srun python -V

Example Job script (in Ondemand’s editor)

Job Parameters

You want Switches needed

More than one cpu for the job --cpus-per-task=2, or -c 2

To specify an ordering of your jobs --dependency=afterok:job_id, or -d
job_id

Split up the output, and errors --output=result.txt --error=error.txt
To run your job at a particular
time/day

--begin=16:00 --begin=now+1hour
--begin=2010-01-20T12:34:00

Add MPI tasks/ranks to your job --ntasks=2, or -n 2

To control job failure options --norequeue –requeue
To receive status email --mail-type=ALL

Contraints and Resources

You want Switches needed

To choose a specific node feature
(e.g. avx2) --constraint=avx2

To use a generic resources (e.g. a
gpu) --gres=gpu:tesla:1, -G1

To reserve a whole node for yourself --exclusive
To chose a partition --partition

Cluster = Login-nodes + Compute-nodes + etc

Accessing Monsoon

Three Methods (must be on NAU Internet or NAUVPN):

● Connect to OpenOndemand web interface at: https://ondemand.hpc.nau.edu
● ssh into a login node

○ Windows Users:
■ use Putty (preferred) or Powershell

○ Mac, Linux, or Unix users: use ssh command
○ login nodes:

■ monsoon.hpc.nau.edu (for research)
■ wind.hpc.nau.edu
■ ondemand.hpc.nau.edu
■ rain.hpc.nau.edu (for class work)

○ data transfer nodes:
■ dtn1.hpc.nau.edu

● Special purpose node, use for any large data transfers!
● SMB connection (files only)

○ \\shares.hpc.nau.edu\cirrus
○ see guide here: https://in.nau.edu/arc/overview/file-management/

https://ondemand.hpc.nau.edu
https://in.nau.edu/arc/overview/file-management/

Login node vs Compute node

• When you log into “monsoon” interactively or via Ondemand
you are “placed” on a login node.

• The login node is a shared system used solely for:
– Developing scripts
– Transferring small data
– Submitting work to the scheduler
– Analyzing results
– Debug work less than 30 minutes in length

• The compute nodes are what make the cluster powerful!

Ondemand

• Open Ondemand (OOD) is an interactive Graphical User
Interface (gui) to the Cluster. You access it from your web
browser at https://ondemand.hpc.nau.edu

Ondemand File Explorer

• The file explorer is used to explore, and transfer the files in
your home, scratch, or other areas on the cluster.

Ondemand Job Composer

• The Job Composer is used to create and run jobs.

Exercise 1

Create a simple job in the job composer from the template that you will then submit
to the scheduler to run on the compute nodes.
• From Ondemand, click the Jobs > Job Composer menu
• Click on New Job and select From Default Template
• Click on Open Editor (bottom of right-column of page)
• Change all “NAUID” to be your nau user-ID, e.g.: abc123!
• Name your job: “exercise1”
• Name & direct your output to /scratch/<NAUID>/exercise1.out
• Make your jobscript load the module named “workshop”
• Make your jobscript run the “date” command

– i.e.: “srun date”

• Additionally, run the “exercise1” command, as well
• Save (in this tab), and then submit your job via the job composer (previous tab)
• Use the File Explorer to examine your output (Files > /scratch/NAUID)
• Make a note of the secret code in exercise1.out

Exercise 2

• Create a new job using New Job > From Specified Path
• Source path: /common/contrib/examples/job_scripts
• Name: “longjob” (this is your name for your job)
• Script name: “longjob.sh” (this is our existing filename)
• For Cluster and Account: leave empty
• Save, select “longjob” from the Jobs list, and click Open Editor button as before
• Change all “NAUID” to be your nau ID
• Make your jobscript load the module named “workshop”
• Make your jobscript run the “exercise2” command

– e.g. “srun exercise2”

• Make your job sleep for 5 minutes (sleep 300)
– Sleep is a command that creates a lazy process that … sleeps and does nothing

• Save, and then Submit
• Monitor your job by selecting Jobs and Active Jobs from your Dashboard.
• Examine the output in long.txt
• Make a note of the secret code from long.txt

Command-line access

• Once you have the basics down using Ondemand, then the
power of the cluster is exposed through the command-line
(CLI).

• Access the CLI from the Dashboard, under clusters menu
• Follow along after opening the CLI.
• Feel free to tryout the commands that we will be discussing
• Tip: The Monsoon CLI may also be accessed outside of

ondemand via an ssh client such as putty on Windows or
Terminal on the Mac.

The Ondemand CLI
• You may access the CLI from the dashboard and selecting

Clusters > Monsoon login node shell

Note: When logging in,
ssh does NOT give
interactive feedback
while you enter your
password, but it will
evaluate your password
attempt upon hitting
enter!

Interactive / Debug Work

• Run your compiles and testing on the cluster nodes by:

– srun -p all gcc hello.c –o a.out
– srun --qos=debug -c12 make -j12
– srun Rscript analysis.r
– srun python analysis.py

– Try this now:
• srun hostname
• hostname

Long Interactive work

• salloc
– Obtain a SLURM job allocation that you can work with for an extended amount of time interactively. This is useful for testing/debugging for an

extended amount of time.

[user1@wind ~]$ salloc -c 8 --time=2-00:00:00
salloc: Granted job allocation 33442
[user1@wind ~]$ srun python analysis.py
[user1@wind ~]$ exit
salloc: Relinquising job allocation 33442

[user1@wind ~]$ salloc -N 2
salloc: Granted job allocation 33443
[user1@wind ~]$ srun hostname
cn3
cn2
[user1@wind ~]$ exit
salloc: Relinquising job allocation 33443

Submitting jobs

The sbatch command is used to submit batch jobs to the slurm
workload manager. Jobs submitted with sbatch are placed in a
queue where they wait for resources to become available.

[user1@wind ~]$ sbatch jobscript.sh

Submitted batch job 85223
– slurm returns a job id for your job that you can use to monitor or

modify constraints

Monitoring your job

• squeue
– view information about jobs located in the SLURM scheduling queue.

• squeue --start
• squeue -u login
• squeue -o “%j %u … “
• squeue -p partitionname
• squeue -S sortfield
• squeue -t <state> (PD or R)

Cluster info

• sinfo
– view information about SLURM nodes and partitions.

• sinfo -N –l

• sinfo –R
– List reasons for downed nodes and partitions

Monitoring your job

• sprio
– view the factors that comprise a job’s scheduling priority

• sprio –l

-- list priority of users jobs in pending state

• sprio -o “%j %u … “

• sprio -w

Monitoring your job

• sstat
– Display various statistics and information of a running job

• sstat -j jobid

• sstat -o AveCPU,AveRSS

• Only works with jobs where analysis is executed with “srun”

Controlling your job

• scancel
– Used to signal jobs or job steps that are under the control of Slurm.

• scancel jobid

• scancel -n jobname

• scancel -u mylogin

• scancel -t pending (only yours)

Controlling your job

• scontrol
– Used to view and modify Slurm configuration and state

– Can change job constraints while it’s in the pending state, but once
the job starts, it can no longer be modified

• scontrol show job 85224

• scontrol update jobid=6880341 timelimit=4:00:00

Job Accounting

• sacct
– displays accounting data for of your jobs and job steps in the SLURM job

accounting log or SLURM database
• sacct -j jobid -o jobid,elapsed,maxrss
• sacct -N nodelist
• sacct -u mylogin

• Try our sacct wrapper “jobstats”
– jobstats -r
– jobstats -j <jobid>

Job Accounting

• sshare
– Tool for listing the shares of associations to a cluster.

• sshare -l : view and compare your groups cpu minutes usage

• sshare -a : view all users fairshare

• sshare –A –a <account> : view all members in your account
(group)

• group_efficiency <account>

Account hierarchy

• Your user account belongs to a parent faculty account (group)
• Your user account shares resources that are provided for your group
• Example:

– account1
• user1
• user2

• View the account structure you belong to with: “sshare -a –A
<account>”

• Example:
– sshare -a -A account1

Limits on the account (group)

• Limits are in place to prevent intentional or unintentional
misuse of resources to ensure quick and fair turn around times
on jobs for everyone.

• Groups are limited to a total number of cpu minutes in use at
one time: 5M, and gpu minutes: 64K

• This resource limit mechanism is referred to as:
“TRESRunMins”.

• This limiting mechanism has nothing to do with priority!

TRESRunMins Limit

• What the heck is that!?
• A number which limits the total number of remaining resource

minutes which your running jobs can occupy.
• Enables flexible resource limiting
• Staggers jobs
• Increases cluster utilization
• Leads to more accurate resource requests

• Sumofjobs(resource * timelimit remaining)

Examples

• 14400 = 10 jobs, 1 cpu, 1 day in length
• 144000 = 10 jobs, 10 cpu, 1 day in length
• 720000 = 10 jobs, 10 cpu, 5 days in length
• 720000 = 1000 jobs, 1 cpu, ½ day in length
• 1105920 = 1 job, 1024 cpus, 18 hrs in length

Questions?

• Check your groups resource min usage:
– sshare -l

TRES run minutes (demo)

• Say, groupA’s total cpu minute limit is: 5000
• Example, groupA submits three jobs

– Job1:
• 1 core
• 1 day timelimit (1440 minutes)
• 1 GB memory

– Job2:
• 2 core
• 1 days (1440 minutes)
• 16 GB memory
• 2880 minutes total !

– Job 3:
• 1 core
• 1 day (1440 minutes)
• 1GB memory

TRES run minutes

– Assuming there are available monsoon resources

– How many jobs start?

– How many cpu minutes are in use?

– When is job 3 ELIGIBLE to start?

TRES run minutes

– Assuming there are available monsoon resources
– How many jobs start?

• 2

– How many cpu minutes are in use?
• 1440+2880 = 4320

– When is job 3 ELIGIBLE to start?
• After ~6 hours (6*60 = 360), and 2 jobs (360*2) = 720 minutes

• We have only 5000-4320 = 680 minutes available initially
• After ~ 1/4 day goes by (360 minutes) * 2 (two jobs) = 720 minutes
• 680 + 720 = 1400
• After another 40 minutes we’ll have 1440 at which point job starts

Helpful Linux Commands
List Files ls

options -l – to show more information

Change Directory cd <directory path>
cd by itself will return you to your home directory

Show/print current working directory pwd

Copy Files cp <source> <destination>
use a period for the destination to copy a file to your current
directory

Move or rename a file mv <source> <destination>

Delete a file rm <filename>

Create a directory mkdir <directory name>

View contents of a file more <filename>
less <filename>
cat <filename>

Edit a file nano <filename>

Exit your terminal session (log off) exit

Exercise 3 via CLI

Get to know monsoon and Slurm, on your own. Start by opening a
shell to Monsoon.

1. How many nodes make up monsoon?
– Hint: use “sinfo”
– How many nodes are in the gpu partition?

3. How many jobs are currently in the running state ?
– Hint: use “squeue -t R”

4. How many jobs are currently in the pending state? Why?
– Hint: use “squeue –t PD”

Exercise 4 via CLI

• Copy job script and edit:
– /common/contrib/examples/job_scripts/lazyjob.sh

• Edit the job, change NAUID to be your id
• Save the job
• Submit the job (sbatch lazyjob.sh), it will take 65 sec

to complete
• Use sstat and squeue to monitor the job

– sstat -j <jobid>, and squeue –u <userid>
• Review the resources that the job used

– jobstats -r
• We are looking for “MaxRSS”, MaxRSS is the max

amount of memory used
• Edit the job scripts memory request, reduce the

memory being requested in MB and resubmit, edit
“--mem=“ , e.g. --mem=600

• Review the resources that the optimized job utilized
once again
– jobstats -r

• Ok, memory looks good, but notice that the usercpu is the
same as the elapsed time

Usercpu = num utilized cpus * elapsed time

• This is because the application we were running only used 1
of the 4 cpus that we requested

• Edit the lazy job script, comment out first srun command,
and uncomment the second srun command.

• Resubmit
• Rerun jobstats -r, notice now usercpu is a multiple times the

elapsed time, in this case (4). Because we were allocated 4
cpus, and used 4 cpus.

• Now address the egregious time estimate!
• Make a note of the secret code from lazy.txt!

Archived Job scripts

Every job script that is submitted to slurm on monsoon is
archived for three reasons:

1. Convenience – if you forget what script was used for what job,
you can find out!

2. Support assistance – we can find the job script that was used
in your job to help troubleshoot with you.

3. Security / stability – in case of any security or stability issues,
we can connect issues and outages to associated jobs

Retrieval of a job script

• Archived job scripts, and their environment are stored here:
– /common/jobscript_archive/<user>/<year>/<month>
– <job id>.sh – job script
– <job id>.env – job scripts environment
– Only the individual researcher and our support group can access their job scripts

• Example:
• User abc123, accessing job id 2600 from March, 2021
• cat /common/jobscript_archive/abc123/2021/03/2600*.sh
• cp /common/jobscript_archive/abc123/2021/03/2600*.sh ~/

• Use “showscript” to make it easy!!!!

Showscript Demo

Checking your quotas

• From time to time you may need to examine how much space
you are using in the various monsoon storage areas

[ricky@wind ~]$ getquotas

Filesystem #Bytes Quota % | #Files Quota %

/home 13684M 20000M 68% | - - -

/scratch 67.62G 9.313T 0% | 419K 2M 20%

Changing Your Default Account

• All researchers have a default slurm account to track usage

• See it now by: “sacctmgr show user name=<NAUID>”

• Some researchers belong to multiple slurm accounts

• Example to override the default:

• #SBATCH --account=prof_lastname

Confirming Your Account

• This is a required step for your account to be fully enabled!
• After completing the exercises: one, two, and four, you will

have three, 32 character alpha-numeric codes
• With the codes in hand, confirm your monsoon account with

the commands:
– module load workshop
– confirm_user

• More information here:
– https://in.nau.edu/arc/obtaining-an-account/

https://in.nau.edu/arc/obtaining-an-account/

Optimizing Your Cluster Use

• To get the most out of the cluster for yourself and your team, it
is important to optimize the settings for your jobs.

• Optimization includes memory requested, time for the job to
run, number of cpus

Slurm Arrays!

Slurm Arrays Exercise

• From your scratch directory: “/scratch/nauid”

• tar xvf /common/contrib/examples/bigdata_example.tar

• cd bigdata

• edit the file “job_array.sh” so that it works with your nau id
replacing all NAUID with yours

• Submit the script “sbatch job_array.sh”

• Run “squeue”, notice there are 5 jobs running, how did that
happen!

Keep these tips in mind

• Know the software you are running, is it multi-threaded?

• Request resources accurately

• Supply an accurate time limit for your job

• Don’t be lazy, it will affect you and your group negatively

Common Questions

• Should I use OnDemand or the command line?
– Power users will tend to use command line

– However, the terminal in ondemand is worth using all the time

Question and Answer

• More info here:
http://nau.edu/arc
hpcsupport@nau.edu

• Job efficiency
– http://metrics.hpc.nau.edu

• FREE – Linux command line book:
– http://linuxcommand.org/tlcl.php
– Info here: https://in.nau.edu/arc/external-resources/linux-resources/

• And on the nauhpc listserv
– nauhpc@lists.nau.edu

http://nau.edu/arc
http://metrics.hpc.nau.edu/
http://linuxcommand.org/tlcl.php
https://in.nau.edu/arc/external-resources/linux-resources/
mailto:nauhpc@lists.nau.edu

MPI Example

• Refer to the MPI example here:
– /common/contrib/examples/job_scripts/mpijob.sh

• Edit it, for your work areas, then experiment:
– Change number of tasks, nodes … etc

• Also can run the example like this:
– srun --qos=debug –n4 /common/contrib/examples/mpi/hellompi

