
Intro to Monsoon and Slurm
(classroom)

RECORD ZOOM
Slides:

https://rcdata.nau.edu/hpcpub/workshops/odintro_class.pdf

Christopher Coffey
2/25/2022

Get logged in!
• Slides here:

– https://rcdata.nau.edu/hpcpub/workshops/odintro_class.pdf

• From a Computer:
– Log into NAU VPN!

• Instructions here: https://in.nau.edu/its/remote-services/
• VPN requires Two Factor Authentication

– https://nau.service-now.com/kb_view.do?sysparm_article=KB0013321

– Open a web browser
• May need to search in start menu for it

– Browse to ondemand.hpc.nau.edu
• Log in with your_louie_id

– Click on clusters tab, and select monsoon cluster login shell

https://in.nau.edu/its/remote-services/
https://nau.service-now.com/kb_view.do?sysparm_article=KB0013321
mailto:your_id@monsoon.hpc.nau.edu

List of Topics

• Cluster education
– What is a cluster, exactly?
– Queues, scheduling and resource management

• Cluster Orientation
– Monsoon cluster specifics
– How do I use this cluster?
– Exercises
– Question and answer

What is a cluster?

• A computer cluster is many individual computers systems
(nodes) networked together locally to serve as a single
resource

• Ability to solve problems on a large scale not feasible alone

What is scheduling?

• “A plan or procedure with a goal of completing some objective
within some time frame”

• Scheduling for a cluster at the basic level is much the
same. Assigning work to computers to complete objectives
within some time availability

• Not exactly that easy though. Many factors come into play
scheduling work on a cluster.

Scheduling

• A scheduler needs to know what resources are available on the
cluster

• Assignment of work on a cluster is carried out most efficiently
with scheduling and resource management working together

Resource Management

• Monitoring resource availability and health
• Allocation of resources
• Execution of resources
• Accounting of resources

Cluster Resources

• Node
• Memory
• CPU’s
• GPU’s
• Licenses

What is a queue?

• Normally thought of as a line, FIFO
• Queues on a cluster can be as basic as a FIFO, or far more

advanced with dynamic priorities taking into consideration
many factors

Many scheduling methods

• FIFO
– Simply first in first out

• Backfill
– Runs smaller jobs with lower resource requirements while larger jobs

wait for higher resource requirements to be available

• Fairshare
– Prioritizes jobs based on users recent resource consumption

Inside a Node

Socket 0

Socket 3Socket 2

Socket 1

Ted’s job

Bill’s job Mary’s job

Monsoon Today

• The Monsoon cluster is a resource available to the NAU research
enterprise

• 105 systems (nodes) – cn[1-105]
• 3824 Intel, and AMD cores
• 20 GPUs, NVIDIA Tesla K80, P100, and V100
• Red Hat Enterprise Linux 8.4
• 24TB memory - 128GB/node min, 2TB max
• 1PB high-speed scratch storage (Lustre)
• 615TB long-term storage (ZFS)
• High speed interconnect: FDR, and HDR Infiniband

Slurm … yummm

• Slurm (Simple Linux Utility for Resource Management)
• Excellent resource manager and scheduler
• Precise control over resource requests
• Developed at LLNL, continued by SchedMD
• Used everywhere from small clusters to the largest clusters:
– Fugaku (#1), 7.6M cores, 537 PF, 30 kW - Japan
– Summit (#2), 2.4M cores, NVIDIA Volta GPUs, 200 PF, 10.1k kW - USA

Small Cluster!

Dual core?

Largest Cluster!

7.6M cores

Monsoon scheduling

• Combination of scheduling methods
• Currently configured to utilize backfill along with a multifactor

priority system to prioritize jobs

Factors attributing to priority

• Fairshare (predominant factor)
– Priority points determined on users recent resource usage
– Decay half life over 1 days

• QOS (Quality of Service)
– Some QOS have higher priority than others, for instance: debug

• Age – how long has the job sat pending
• Job size - the number of nodes/cpus a job is requesting

Storage

• /home – 10GB quota
– Keep your scripts and executables here
– Snapshotted twice a day: /home/.snapshot
– Please do not write job output (logs, results) here!!

• /scratch – 500TB total space, 30 day retention
– Very fast storage, capable of 11GB/sec
– Quota: 10TB, 2M files
– Checkpoints, logs
– Keep all temp/intermediate data here
– Should be your default location to perform input/output

Data Flow

1. Keep scripts and executables in /home
2. Write temp/intermediate data to /scratch
3. Copy data to /projects/<group_project>, for group storage

and reference in other projects
4. Cleanup /scratch

** Remember, /scratch is a scratch filesystem, used for high-
speed temporary, and intermediate data

Remote storage access

• scp
– scp files nauid@wind.hpc.nau.edu:/scratch/nauid
– WinSCP (windows)
– Cyberduck (mac)

mailto:nauid@monsoon.hpc.nau.edu

Modules

• Software environment management handled by the modules
package management system

• module avail – what modules are available
• module list – modules currently loaded
• module load <module name> - load a package module
• module display <module name> - detailed information

including environment variables effected

Software

• Matlab
• Mathematica
• R
• SAS
• Qiime2
• Anaconda Python
• Lots of bioinformatics programs
• Request additional software to be installed!

Interacting with Slurm

• What resources are needed?
– 2 cpus, 12GB memory, for 2 hours?

• What steps are required?
– Run prog1, then prog2 … etc
– Are the steps dependent on one another?

• Can your work, or project be broken up into smaller pieces?
Smaller pieces can make the workload more agile.

• How long should your job run for?
• Is your software multithreaded, using pthreads, OpenMP or MPI?

Job Scripts and sbatch

• Except for limited testing and debugging, all jobs on the cluster
should be run via a shell script which is typically denoted by
the extension .sh on the filename

• sbatch shell scripts are composed of three sections:

1. Slurm job parameters (#SBATCH)
2. module loading
3. srun job steps/statements for the actual work

Example Job script
• #!/bin/bash
• #SBATCH --job-name=test
• #SBATCH --output=/scratch/nauid/output.txt # the stdout from your program goes here
• #SBATCH --time=20:00 # shorter time = sooner start
• #SBATCH --chdir=/scratch/nauid # default location slurm searches

• # replace this module with software required in your workload
• module load anaconda3/2021.11 # loads a specific anaconda python

• # example job commands
• # each srun command is a job step, so this job will have 2 steps
• srun sleep 300
• srun python -V

Job Parameters
You want Switches needed
More than one cpu for the job --cpus-per-task=2, or -c 2

To specify an ordering of your jobs --dependency=afterok:job_id, or -d
job_id

Split up the output, and errors --output=result.txt --error=error.txt
To run your job at a particular
time/day

--begin=16:00 --begin=now+1hour --
begin=2010-01-20T12:34:00

Add MPI tasks/ranks to your job --ntasks=2, or -n 2
To control job failure options --norequeue –requeue
To receive status email --mail-type=ALL

Contraints and Resources
You want Switches needed
To choose a specific node feature
(e.g. avx2) --constraint=avx2

To use a generic resources (e.g. a
gpu) --gres=gpu:tesla:1

To reserve a whole node for yourself --exclusive
To chose a partition --partition

Login node vs Compute node
• When you log into “monsoon” interactively or via Ondemand you are

placed on a login node.
• The login node is a shared system used solely for:
– Developing scripts
– Transferring small data
– Submitting work to the scheduler
– Analyzing results
– Debug work less than 30 minutes in length

• The compute nodes are what make the cluster powerful!
• Don’t attempt to complete your homeworks outside of slurm. If you do,

they will be auto-killed, and your professor will be notified!

Ondemand

• Open Ondemand (OOD) is an interactive Graphical User
Interface (gui) to the Cluster. You access it from your web
browser at https://ondemand.hpc.nau.edu

Ondemand File Explorer

• The file explorer is used to explore, and transfer the files in
your home, scratch, or other areas on the cluster.

Ondemand Job Composer

• The Job Composer is used to create and run jobs.

Changing default slurm account

• Some of you may already have an research slurm account
• If so, your classroom account won’t be the default
• Specify the correct Slurm account to use with:
• #SBATCH --account=
• For instance …
• #SBATCH --account=inf503-spr22

Exercise 1
• Create a simple job in the job composer from the template that you will then submit to the scheduler to run on the

compute nodes.
• Click on New Job and select From Default Template
• Click on “open editor”
• Change NAUID to be your alpha numeric nau id, e.g. abc123!
• Name your job: “exercise1”
• Name your job’s output: “exercise1.out”
• Output should go to /scratch/<user>/exercise1.out
• Load the module called: workshop
• Run the “date” command

– E.g. “srun date”
• And additionally, the “exercise1” command
• Save your job
• Submit your job via the job composer
• Use the File Explorer to examine your output (Goto -> /scratch/your_id)
• Make a note of the secret code in exercise1.out

Exercise 2
• Create a new job using “New Job” and “From Specified Path”.
• Source path /common/contrib/examples/job_scripts
• Name: longjob
• Script name: longjob.sh
• Cluster and account: leave empty
• Save
• Edit job, bottom left, change NAUID to be your id
• Load the module called: workshop
• Run the “exercise2” command

– E.g. “srun exercise2”
• Make your job sleep for 5 minutes (sleep 300)

– Sleep is a command that creates a lazy process that … sleeps and does nothing
• Save
• Submit
• Monitor your job by selecting Jobs and Active Jobs from your Dashboard.
• Examine the output in long.txt
• Make a note of the secret code from long.txt

Command-line access

• Once you have the basics down using Ondemand, then the
power of the cluster is exposed through the commandline
(CLI).

• Access the CLI from the Dashboard, under clusters menu
• Follow along after opening the CLI.
• Feel free to tryout the commands that we will be discussing
• Tip: The Monsoon CLI may also be accessed outside of

ondemand via an ssh client such as putty on Windows or
Terminal on the Mac.

The Ondemand CLI

• You may access the CLI from the dashboard and selecting
Clusters and Monsoon Cluster Shell Access

Interactive / Debug Work

• Run your compiles and testing on the cluster nodes by:

– srun -p all gcc hello.c –o a.out
– srun --qos=debug -c12 make -j12
– srun Rscript analysis.r
– srun python analysis.py

– Try this now:
• srun hostname
• hostname

Long Interactive work via Slurm
• salloc

– Obtain a SLURM job allocation that you can work with for an extended amount of time interactively. This is useful for
testing/debugging for an extended amount of time.

[user1@wind ~]$ salloc -c 1 --time=2-00:00:00 # allocate 1 cpu for 2 days for your use
salloc: Granted job allocation 33442

[user1@wind ~]$ srun python analysis.py
[user1@wind ~]$ exit
salloc: Relinquising job allocation 33442

[user1@wind ~]$ salloc -c 1 --time=2-00:00:00
salloc: Granted job allocation 33443
[user1@wind ~]$ srun gcc -o a.out hw1.cc
[user1@wind ~]$ srun ./a.out

Submitting jobs

The sbatch command is used to submit batch jobs to the slurm
workload manager. Jobs submitted with sbatch are placed in a
queue where they wait for resources to become available.

[user1@wind ~]$ sbatch jobscript.sh
Submitted batch job 85223
– slurm returns a job id for your job that you can use to monitor or

modify constraints

Monitoring your job

• squeue
– view information about jobs located in the SLURM scheduling queue.

• squeue --start
• squeue -u login
• squeue -o “%j %u … “
• squeue -p partitionname
• squeue -S sortfield
• squeue -t <state> (PD or R)

Controlling your job

• scancel
– Used to signal jobs or job steps that are under the control of Slurm.

• scancel -j jobid
• scancel -n jobname
• scancel -u mylogin
• scancel -t pending (only yours)

Controlling your job

• scontrol
– Used to view and modify Slurm configuration and state.
– Can change job constraints while it’s in pending state, once the job

starts, it can no longer be modified

• scontrol show job 85224
• scontrol update jobid=6880341 timelimit=4:00:00

Job Accounting

• To see job history, and job efficiency use jobstats!

– jobstats -r # see todays jobs, including running jobs
– jobstats -j <jobid> # see stats for the individual jobid
– jobstats -S 9/1/19 # see job stats for all jobs since 9/1/19

Helpful Linux Commands
List Files ls

options -l – to show more information
Change Directory cd <directory path>

cd by itself will return you to your home directory
Show/print current working directory pwd
Copy Files cp <source> <destination>

use a period for the destination to copy a file to your current
directory

Move or rename a file mv <source> <destination>
Delete a file rm <filename>
Create a directory mkdir <directory name>
View contents of a file more <filename>

less <filename>
cat <filename>

Edit a file nano <filename>
Exit your terminal session (log off) exit

Exercise 3 via CLI

Get to know monsoon and Slurm, on your own. Start by opening a
shell to Monsoon.

1. How many nodes make up monsoon?
– Hint: use “sinfo”
– How many nodes are in the gpu partition?

3. How many jobs are currently in the running state ?
– Hint: use “squeue -t R”

4. How many jobs are currently in the pending state? Why?
– Hint: use “squeue –t PD”

Exercise 4 via CLI
• Copy job script and edit:

– /common/contrib/examples/job_scripts/lazyjob.sh
• Edit the job, change NAUID to be your id
• Save the job
• Submit the job (sbatch lazyjob.sh), it will take 65 sec

to complete
• Use sstat and squeue to monitor the job

– sstat -j <jobid>, and squeue –u <userid>
• Review the resources that the job used

– jobstats -r
• We are looking for “MaxRSS”, MaxRSS is the max

amount of memory used
• Edit the job scripts memory request, reduce the

memory being requested in MB and resubmit, edit
“--mem=“ , e.g. --mem=600

• Review the resources that the optimized job utilized
once again
– jobstats -r

• Ok, memory looks good, but notice that the usercpu is the
same as the elapsed time

Usercpu = num utilized cpus * elapsed time

• This is because the application we were running only used 1
of the 4 cpus that we requested

• Edit the lazy job script, comment out first srun command,
and uncomment the second srun command.

• Resubmit
• Rerun jobstats -r, notice now usercpu is a multiple times the

elapsed time, in this case (4). Because we were allocated 4
cpus, and used 4 cpus.

• Now address the egregious time estimate!
• Make a note of the secret code from lazy.txt!

Confirming Your Account

• This is a required step for your account to be fully enabled!
• After completing the exercises: one, two, and four, you will have

three, 32 character alpha-numeric codes
• With the codes in hand, confirm your monsoon account with the

commands:
– module load workshop
– confirm_user

• More information here:
– https://in.nau.edu/hpc/obtaining-an-account/

https://in.nau.edu/hpc/obtaining-an-account/

Question and Answer

• More info here:
http://nau.edu/hpc

• Linux shell help here:
– http://linuxcommand.org/tlcl.php
– Free book download
– https://nau.edu/HPC/Linux-External-Resources/

• And on the nauhpc listserv
– nauhpc@lists.nau.edu

http://nau.edu/hpc
http://linuxcommand.org/tlcl.php

