Intro to Monsoon and Slurm (classroom) RECORD ZOOM

Slides:

https://rcdata.nau.edu/hpcpub/workshops/odintro_class.pdf

Christopher Coffey 2/25/2022

Get logged in!

- Slides here:
 - https://rcdata.nau.edu/hpcpub/workshops/odintro_class.pdf
- From a Computer:
 - Log into NAU VPN!
 - Instructions here: https://in.nau.edu/its/remote-services/
 - VPN requires Two Factor Authentication
 - https://nau.service-now.com/kb_view.do?sysparm_article=KB0013321
 - Open a web browser
 - May need to search in start menu for it
 - Browse to ondemand.hpc.nau.edu
 - Log in with your louie id
 - Click on clusters tab, and select monsoon cluster login shell

List of Topics

- Cluster education
 - What is a cluster, exactly?
 - Queues, scheduling and resource management
- Cluster Orientation
 - Monsoon cluster specifics
 - How do I use this cluster?
 - Exercises
 - Question and answer

What is a cluster?

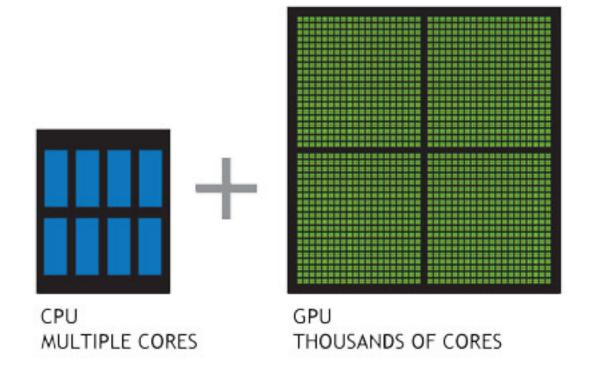
- A computer cluster is many individual computers systems (nodes) networked together locally to serve as a single resource
- Ability to solve problems on a large scale not feasible alone

What is scheduling?

- "A plan or procedure with a goal of completing some objective within some time frame"
- Scheduling for a cluster at the basic level is much the same. Assigning work to computers to complete objectives within some time availability
- Not exactly that easy though. Many factors come into play scheduling work on a cluster.

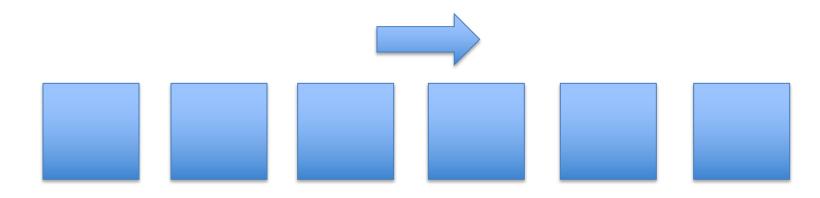
Scheduling

- A scheduler needs to know what resources are available on the cluster
- Assignment of work on a cluster is carried out most efficiently with scheduling and resource management working together


Resource Management

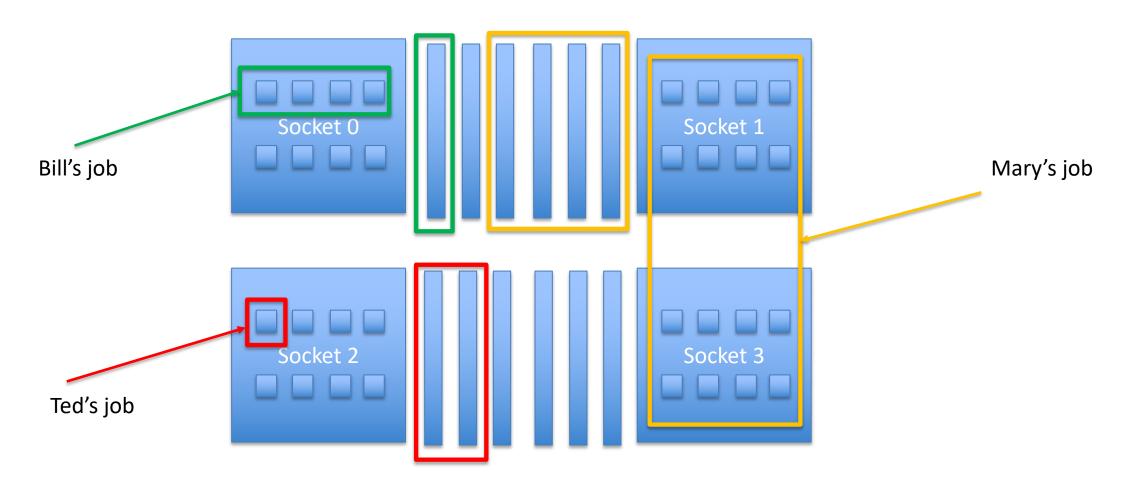
- Monitoring resource availability and health
- Allocation of resources
- Execution of resources
- Accounting of resources

Cluster Resources


- Node
- Memory
- CPU's
- GPU's
- Licenses

What is a queue?

- Normally thought of as a line, FIFO
- Queues on a cluster can be as basic as a FIFO, or far more advanced with dynamic priorities taking into consideration many factors



Many scheduling methods

- FIFO
 - Simply first in first out
- Backfill
 - Runs smaller jobs with lower resource requirements while larger jobs wait for higher resource requirements to be available
- Fairshare
 - Prioritizes jobs based on users recent resource consumption

Inside a Node

Monsoon Today

- The Monsoon cluster is a resource available to the NAU research enterprise
- 105 systems (nodes) cn[1-105]
- 3824 Intel, and AMD cores
- 20 GPUs, NVIDIA Tesla K80, P100, and V100
- Red Hat Enterprise Linux 8.4
- 24TB memory 128GB/node min, 2TB max
- 1PB high-speed scratch storage (Lustre)
- 615TB long-term storage (ZFS)
- High speed interconnect: FDR, and HDR Infiniband

Slurm ... yummm

- Slurm (Simple Linux Utility for Resource Management)
- Excellent resource manager and scheduler
- Precise control over resource requests
- Developed at LLNL, continued by SchedMD
- Used everywhere from small clusters to the largest clusters:
 - Fugaku (#1), 7.6M cores, 537 PF, 30 kW Japan
 - Summit (#2), 2.4M cores, NVIDIA Volta GPUs, 200 PF, 10.1k kW USA

Small Cluster!

Dual core?

Largest Cluster!

7.6M cores

Monsoon scheduling

- Combination of scheduling methods
- Currently configured to utilize backfill along with a multifactor priority system to prioritize jobs

Factors attributing to priority

- Fairshare (predominant factor)
 - Priority points determined on users recent resource usage
 - Decay half life over 1 days
- QOS (Quality of Service)
 - Some QOS have higher priority than others, for instance: debug
- Age how long has the job sat pending
- Job size the number of nodes/cpus a job is requesting

Storage

- /home 10GB quota
 - Keep your scripts and executables here
 - Snapshotted twice a day: /home/.snapshot
 - Please do not write job output (logs, results) here!!
- /scratch 500TB total space, 30 day retention
 - Very fast storage, capable of 11GB/sec
 - Quota: 10TB, 2M files
 - Checkpoints, logs
 - Keep all temp/intermediate data here
 - Should be your default location to perform input/output

Data Flow

- 1. Keep scripts and executables in /home
- 2. Write temp/intermediate data to /scratch
- 3. Copy data to /projects/<group_project>, for group storage and reference in other projects
- 4. Cleanup /scratch

** Remember, /scratch is a scratch filesystem, used for highspeed temporary, and intermediate data

Remote storage access

- scp
 - scp files <u>nauid@wind.hpc.nau.edu</u>:/scratch/nauid
 - WinSCP (windows)
 - Cyberduck (mac)

Modules

Software environment management handled by the modules package management system

- module avail what modules are available
- module list modules currently loaded
- module load <module name> load a package module
- module display <module name> detailed information including environment variables effected

Software

- Matlab
- Mathematica
- R
- SAS
- Qiime2
- Anaconda Python
- Lots of bioinformatics programs
- Request additional software to be installed!

Interacting with Slurm

- What resources are needed?
 - 2 cpus, 12GB memory, for 2 hours?
- What steps are required?
 - Run prog1, then prog2 ... etc
 - Are the steps dependent on one another?
- Can your work, or project be broken up into smaller pieces?
 Smaller pieces can make the workload more agile.
- How long should your job run for?
- Is your software multithreaded, using pthreads, OpenMP or MPI?

Job Scripts and sbatch

- Except for limited testing and debugging, all jobs on the cluster should be run via a shell script which is typically denoted by the extension .sh on the filename
- sbatch shell scripts are composed of three sections:

- 1. Slurm job parameters (#SBATCH)
- 2. module loading
- 3. srun job steps/statements for the actual work

Example Job script

- #!/bin/bash
- #SBATCH --job-name=test
- #SBATCH --output=/scratch/nauid/output.txt
- #SBATCH --time=20:00
- #SBATCH --chdir=/scratch/nauid

- # the stdout from your program goes here
- # shorter time = sooner start
- # default location slurm searches
- # replace this module with software required in your workload
- module load anaconda3/2021.11

loads a specific anaconda python

- # example job commands
- # each srun command is a job step, so this job will have 2 steps
- srun sleep 300
- srun python -V

Job Parameters

You want	Switches needed
More than one cpu for the job	cpus-per-task=2, or -c 2
To specify an ordering of your jobs	dependency=afterok:job_id, or -d job_id
Split up the output, and errors	output=result.txterror=error.txt
To run your job at a particular time/day	begin=16:00begin=now+1hour begin=2010-01-20T12:34:00
Add MPI tasks/ranks to your job	ntasks=2, or -n 2
To control job failure options	norequeuerequeue
To receive status email	mail-type=ALL

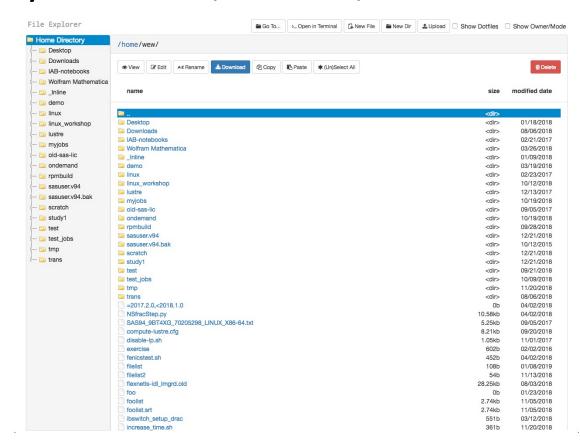
Contraints and Resources

You want	Switches needed
To choose a specific node feature (e.g. avx2)	constraint=avx2
To use a generic resources (e.g. a gpu)	gres=gpu:tesla:1
To reserve a whole node for yourself	exclusive
To chose a partition	partition

Login node vs Compute node

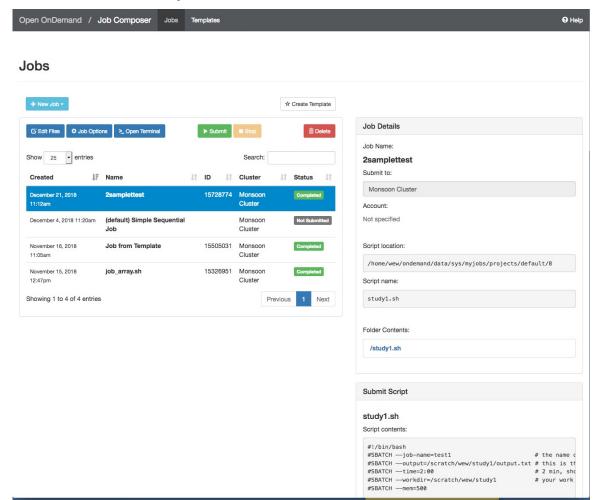
- When you log into "monsoon" interactively or via Ondemand you are placed on a login node.
- The login node is a shared system used solely for:
 - Developing scripts
 - Transferring small data
 - Submitting work to the scheduler
 - Analyzing results
 - Debug work less than 30 minutes in length
- The compute nodes are what make the cluster powerful!
- Don't attempt to complete your homeworks outside of slurm. If you do, they will be auto-killed, and your professor will be notified!

Ondemand


 Open Ondemand (OOD) is an interactive Graphical User Interface (gui) to the Cluster. You access it from your web browser at https://ondemand.hpc.nau.edu

Open OnDemand	Files→	Jobs +	Clusters -					,	Ø Help →	& Logged in as wew	→ Log Out
OPEN											
o ni	De	ma	and								
OnDeman	d provid	les an ir	ntegrated,	single access poi	nt for all of y	our HPC res	ources.				
Message	e of the	e Day									
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*******	**********	****************		************					
# # Welcome #	to Monso	on Open (Ondemand								
# Informat		es auto l	DELETED afte	r 30 days							
#			support@nau								
# # Upcoming											
# - Dec 19	th 2018										
#########	*********	########	***********	**************	************	#########/\r					
powered by Den	nand										

Ondemand File Explorer


 The file explorer is used to explore, and transfer the files in your home, scratch, or other areas on the cluster.

Ondemand Job Composer

The Job Composer is used to create and run jobs.

Changing default slurm account

- Some of you may already have an research slurm account
- If so, your classroom account won't be the default
- Specify the correct Slurm account to use with:
- #SBATCH --account=
- For instance ...
- #SBATCH --account=inf503-spr22

Exercise 1

- Create a simple job in the job composer from the template that you will then submit to the scheduler to run on the compute nodes.
- Click on New Job and select From Default Template
- Click on "open editor"
- Change NAUID to be your alpha numeric nau id, e.g. abc123!
- Name your job: "exercise1"
- Name your job's output: "exercise1.out"
- Output should go to /scratch/<user>/exercise1.out
- Load the module called: workshop
- Run the "date" command
 - E.g. "srun date"
- And additionally, the "exercise1" command
- Save your job
- Submit your job via the job composer
- Use the File Explorer to examine your output (Goto -> /scratch/your_id)
- Make a note of the secret code in exercise1.out

Exercise 2

- Create a new job using "New Job" and "From Specified Path".
- Source path /common/contrib/examples/job_scripts
- Name: longjob
- Script name: longjob.sh
- Cluster and account: leave empty
- Save
- Edit job, bottom left, change NAUID to be your id
- Load the module called: workshop
- Run the "exercise2" command.
 - E.g. "srun exercise2"
- Make your job sleep for 5 minutes (sleep 300)
 - Sleep is a command that creates a lazy process that ... sleeps and does nothing
- Save
- Submit
- Monitor your job by selecting Jobs and Active Jobs from your Dashboard.
- Examine the output in long.txt
- Make a note of the secret code from long.txt

Command-line access

- Once you have the basics down using Ondemand, then the power of the cluster is exposed through the commandline (CLI).
- Access the CLI from the Dashboard, under clusters menu
- Follow along after opening the CLI.
- Feel free to tryout the commands that we will be discussing
- Tip: The Monsoon CLI may also be accessed outside of ondemand via an ssh client such as putty on Windows or Terminal on the Mac.

The Ondemand CLI

 You may access the CLI from the dashboard and selecting Clusters and Monsoon Cluster Shell Access

```
Last login: Wed Jan 23 14:50:32 2019 from ondemand.hpc.nau.edu
  Welcome to Monsoon Open Ondemand

    /scratch : files auto DELETED after 30 days

 Issues or questions: hpcsupport@nau.edu
 Upcoming maintenance:
 [wew@ondemand ~ ]$
```


Interactive / Debug Work

- Run your compiles and testing on the cluster nodes by:
 - srun -p all gcc hello.c –o a.out
 - srun --qos=debug -c12 make -j12
 - srun Rscript analysis.r
 - srun python analysis.py
 - Try this now:
 - srun hostname
 - hostname

Long Interactive work via Slurm

salloc

 Obtain a SLURM job allocation that you can work with for an extended amount of time interactively. This is useful for testing/debugging for an extended amount of time.

```
[user1@wind ^{\sim}]$ salloc -c 1 --time=2-00:00:00 # allocate 1 cpu for 2 days for your use salloc: Granted job allocation 33442 [user1@wind ^{\sim}]$ srun python analysis.py [user1@wind ^{\sim}]$ exit salloc: Relinquising job allocation 33442
```

```
[user1@wind ~ ]$ salloc -c 1 --time=2-00:00:00 salloc: Granted job allocation 33443 [user1@wind ~ ]$ srun gcc -o a.out hw1.cc [user1@wind ~ ]$ srun ./a.out
```


Submitting jobs

The sbatch command is used to submit batch jobs to the slurm workload manager. Jobs submitted with sbatch are placed in a queue where they wait for resources to become available.

[user1@wind ~]\$ sbatch jobscript.sh Submitted batch job 85223

 slurm returns a job id for your job that you can use to monitor or modify constraints

Monitoring your job

- squeue
 - view information about jobs located in the SLURM scheduling queue.
- squeue --start
- squeue -u login
- squeue -o "%j %u ... "
- squeue -p partitionname
- squeue -S sortfield
- squeue -t <state> (PD or R)

Controlling your job

- scancel
 - Used to signal jobs or job steps that are under the control of Slurm.
- scancel -j jobid
- scancel -n jobname
- scancel -u mylogin
- scancel -t pending (only yours)

Controlling your job

- scontrol
 - Used to view and modify Slurm configuration and state.
 - Can change job constraints while it's in pending state, once the job starts, it can no longer be modified
- scontrol show job 85224
- scontrol update jobid=6880341 timelimit=4:00:00

Job Accounting

To see job history, and job efficiency use jobstats!

```
    jobstats -r
    # see todays jobs, including running jobs
```

- jobstats -j <jobid> # see stats for the individual jobid
- jobstats -S 9/1/19 # see job stats for all jobs since 9/1/19

Helpful Linux Commands

List Files	ls options -I — to show more information
Change Directory	<pre>cd <directory path=""> cd by itself will return you to your home directory</directory></pre>
Show/print current working directory	pwd
Copy Files	<pre>cp <source/> <destination> use a period for the destination to copy a file to your current directory</destination></pre>
Move or rename a file	mv <source/> <destination></destination>
Delete a file	rm <filename></filename>
Create a directory	mkdir <directory name=""></directory>
View contents of a file	more <filename> less <filename> cat <filename></filename></filename></filename>
Edit a file	nano <filename></filename>
Exit your terminal session (log off)	exit NORTHERN ARIZ

Exercise 3 via CLI

Get to know monsoon and Slurm, on your own. Start by opening a shell to Monsoon.

- 1. How many nodes make up monsoon?
 - Hint: use "sinfo"
 - How many nodes are in the gpu partition?
- 3. How many jobs are currently in the running state?
 - Hint: use "squeue -t R"
- 4. How many jobs are currently in the pending state? Why?
 - Hint: use "squeue –t PD"

Exercise 4 via CLI

- Copy job script and edit:
 - /common/contrib/examples/job_scripts/lazyjob.sh
- Edit the job, change NAUID to be your id
- Save the job
- Submit the job (sbatch lazyjob.sh), it will take 65 sec to complete
- Use sstat and squeue to monitor the job
 - sstat -j <jobid>, and squeue –u <userid>
- Review the resources that the job used
 - jobstats -r
- We are looking for "MaxRSS", MaxRSS is the max amount of memory used
- Edit the job scripts memory request, reduce the memory being requested in MB and resubmit, edit "--mem=", e.g. --mem=600
- Review the resources that the optimized job utilized once again
 - jobstats -r

• Ok, memory looks good, but notice that the usercpu is the same as the elapsed time

Usercpu = num utilized cpus * elapsed time

- This is because the application we were running only used 1
 of the 4 cpus that we requested
- Edit the lazy job script, comment out first srun command, and uncomment the second srun command.
- Resubmit
- Rerun jobstats -r, notice now usercpu is a multiple times the elapsed time, in this case (4). Because we were allocated 4 cpus, and used 4 cpus.
- Now address the egregious time estimate!
- Make a note of the secret code from lazy.txt!

Confirming Your Account

- This is a required step for your account to be fully enabled!
- After completing the exercises: one, two, and four, you will have three, 32 character alpha-numeric codes
- With the codes in hand, confirm your monsoon account with the commands:
 - module load workshop
 - confirm_user
- More information here:
 - https://in.nau.edu/hpc/obtaining-an-account/

Question and Answer

- More info here:
 - http://nau.edu/hpc
- Linux shell help here:
 - http://linuxcommand.org/tlcl.php
 - Free book download
 - https://nau.edu/HPC/Linux-External-Resources/
- And on the nauhpc listserv
 - nauhpc@lists.nau.edu

